Using Tools in a Leveraged
Synthesis Process

SPC-94067-CMC
Version 01.00.01

December 1994

Accesion For
NT 2 N
BTIC TAR i

oY »
o

The tools mentioned in this report are not specifically recommended or evaluated, eitheramong themselves orrelative to other
commerciallyavailabletoolsthatarenotmentioned. Furthermore, theaccuracyandcompletenessofindividualtool descriptions

have notbeenvalidated with the vendors offering these tools and should not be considered authoritative. For such information,
the respective vendors should be contacted directly.

ADARTS® is a service mark of the Software Productivity Consortium Limited Partnership.

Product names, company names, or names of platforms referenced herein may be trademarks or registered trademarks of their
respective companies, and they are used for identification purposes only.

CONTENTS

ACKNOWLEDGMENTS ..t ciittiitiereeeieeetosstacssscssscsssssscsacscnns ix
EXECUTIVE SUMMARYccoiveeninnns ebessnsseesnsesecressacncostascnn xi
1. INTRODUCTION . ittt tieiitiiteeeeesserecosccosssccossosssssssanssoses 1
3 0 17/ 0 U 1
1.2 Document Audience and Purpose ..ottt 1
1.3 Document StTUCEUTE .« . vttt iiineeteiaiennenasassoanosasscaanoscnnnnsnns i1
1.4 Typographic CONVENtioNScituteiininieeneninttiiieteettiointoeeeenennns 2
2. NEEDS FOR METHODS AND TOOLS ...t eiiiiieiieniteicncccnasccnses 3
2.1 Method NEeds . .cvuniiiiiiiiiiiiieiiereresesrsrnssosnnsnsssansossoseecnss 3
0 U o) B\ (<o - 3
2.2.1 Domain Management . .o..eieieeiiinnrrerossoseaeasassasnononcoscscnns 4
222 Domain Analysis . ..o vvviiniiiiiiiiiiiiiieiii e [4
2.2.3 Domain IMPleMENtationeseeeeeeereeerereeeeennnneeesnmenennnnns 4
2.2.4 Needs for Project SUPPOTt . ve e enneeeneeeunnreruneenaenneennanns A 4
2.2.5 Application Engineeringooeeiiiiieriiiieniiiinieiancnectennans 5
3. TYPICAL TOOLING SCENARIOS ...citteierreerctetatcarsconsscscscnses 7
3.1 Rockwell CCSD Pilot Project Scenarioooiuiiiiiiiieieenreecrenonnnnes 7
3.1.1 Tool Usage SUMMATIY .« ovrvveennrnreeesuesonosensocanonesssosnsnscasnnses 7
3.1.2 Process Artifact and Tool Walkthrougho it 9

3.1.2.1 Domain Analysisccoveeeenrininnnnnn. ettt 9
3.1.2.2 Domain Implementationcoeiiiiininiiieneneresicnsnannnnn. 11

ifi

Contents

3.1.2.3 Application Engineeringttt i i e 14

3.1.3 Tooling Improvement Opporfunitiescooiiviiuiieeuiiieeeeennnnns 14
3.2 Boeing/Navy STARS Demonstration Projectc.0.. 16
3.2.1 Tool Usage SUMIMATY «.vvvetiiniirneeeiiinnereensansossennnnnnncacanss 17
3.2.2 Process Artifact and Tool Walkthroughccviiiiiiiiiiiiinanae.. 20
3.2.2.1 Domain Analysis «............ceun.... e, 20

3.2.2.2 Domain Implementationcoiiiiiiiiiiiinriiiiereniieenenss 20

3.2.2.3 Application ENgINEEringvvuueerurneereeunneeneenaneennesennnnn 21

3.2.3 Opportunities for Improvementccoiiiiiiiiiiiiiiiiiiieeeeeennn. 28

3.3 Case Studies ADalysiS ...ttt ittt eteatettiteaenas 28
G 35 I U1 T L <P 28
KNG 207 1o T (g 29

4. ENHANCED TOOL SUPPORTcitiiitiieiirererrececcacansscnceccnens 31
41 ATypical TOOI Base ..vviuiiiiniiiiiiiiiiiiiiii it iiieeeeienntnnnenonncnnnns 31
4.2 Tools for Domain Managementc.coiviiieiiniiiiriverensnnennnnvonnens 32
4.2.1 Toolsfor Domain Planningccoiiiiiiiiiiiiiiiiiiiiiiiieiieeannnn. 32
4.2.2 Tools for Process Managementooviiviiiiiinnsnccasssnnennennnnns 32
4.2.3 Tools for Configuration Managementcceiiiiveereraenionecans 33
4.3 Tools for Domain Definition e e 34
4.4 Tools for Domain AnalysiSooiiiieiiiiiiiiiiiiiiieieiseransssnacannnnns 35
4.4.1 Tools for DecisionModelingcovviiiiiiiiiiiiiiiiieneereneacenanens 35
4.4.2 Tools for Product Requirementsand Designc.ooiiieeieinnianinnn. 35
4.4.3 Tools for Process REQUITEMENSttt iitieeeseneceseenass 36

4.5 Tools for Domain Implementationcciiiiiiiiiiiiiiiieereerncaennnnnns 36
4.5.1 Tools for Product Implementationoeveiiiuiienrnneneeeneenanennns 36
4.5.1.1 Documentation TOOIScvvueiiiuiiiiiiiiiiiiiinonnenennenennnns 36

4.5.1.2 Code Implementation TOOIS .. vvvrvneriinneieeeeeeerennnnnnnaes 37

Contents

4.5.1.3 User Interface Builder Toolso i, 37

4514 Testing Tools .o it i i te et ieratrenaeete it 38

4.5.2 Tools for Process Support Development UUUTTUSTT U 38

4.5.2.1 Tools for Representing an Application Modelcovveeeieiiaae... 38

4.5.2.2 Tools for Providing a User Interface for Application Modeling 40

4.5.2.3 Domain-Specific Tools for Application Engineeringc.ooeenen... 40

4.6 Tools for Project SUPPOIt .. viir it iiiieeietnereeecnrenoenonns .. 4%

5. CONCLUSIONS e ettt eee e e et 43

APPENDIX A. BOEING/STARS SEE EVALUATIONccocviiirniienncnnncnn. 45
APPENDIX B. USING FILEMAKER PRO TO REPRESENT DECISION

AND APPLICATION MODELSc.cvvieiiniinciecinnnnne. eee 49

B.1 Operations Provided by FileMaker Procoviiiiiiiiiiiiiiiiinnnannn. 49

B.2 Using FileMaker Pro During the Decision Model Activityccoveiiinnna. .. 50

B.3 Using FileMaker Pro During the Process Requirements Activity «.ovvvniiiiiion 5%

B.4 Using FileMaker Pro During the Process Support Development Activity 51

B.5 Using FileMaker Pro During the Application Engineering Activity 51

APPENDIX C. CREATING ADAPTABLE DOCUMENTATIONc.c.cvc.... .o 53

C.1 Interleaf Mechanismsccoviiiiiiiiiiiiannn.. e 53

C.2 Microsoft Word MechanisSm . ..ouiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeecanacenes 53

C.3 WordPerfect MeChanisSms . ..ovuviiiiiiiiierinieieseeiesesesenocecroncoannns 53

C.4 FrameMaker Mechanismcoviveiiiiiiiiiiiiiiiiiiieneeeennnnnnnnnn 54

C.5 Layering Adaptability Onto an Interleaf Document With TRF2.......ccoveeen.... 54

C.6 Comparison of APProachesoceeeieenieieeiuineenaennenoneonesnncns 54

APPENDIX D. AN INFORMATION MODEL FOR LEVERAGED SYNTHESIS 57

D.1 Domain Engineering Processcoviiiiiniiiiiiiiiiiiiiieeeereeeneeacnnnns 58
D.2 Application Engineering Process et eeeiiei ettt 59
LD 2 Do 1 T: 3+ e 60

Contents

D4 Domain Planttt i i i i ettt i 61
D.5 Domain Definitionoiiiiiuiiiiiii it ittt ittt iiaa e 62
D.6 Decision Model 63
D.7 Product Family Requir€mentsooeiinitiiiiiiieriereiieriiecansennnnnns 64
D.8 Product Family Designvvuuiviiiiiiiiiiiiiiiiiiiiiiieineninneneennns 65
D.9 Product Family Implementation e S 66
D.10 Process REQUITEMENES . .vuutiiiniiiteetieatiiiininannereceeennnenenaseanns 67
D.11 Process SUPPOIL «vvvvtiinuuieennerneeeeresrenaennennnsocecssncscoansonans 68
APPENDIX E. REUSE LIBRARYTOOLSitiieiiienrenreennaceececncanas 69
E.1 Reuse Library ToOIS « o oo eviiiiiiiii ittt it cieteteseneennanen 69
E.2 Typical Reuse Library Tool Capabilitiesc.ccvvuiiiiiiiiiiiiiiiiinieennn 70
E.3 Using Reuse Library Toois in Synthesis et Tt
E.3.1 Reuse Library Tool Use in Application Engineeringccooiiiiiianaaon . T
E.3.2 Reuse Library Tool Use in Domain Engineeringcooviiiiiiiiiiiinennnn 71
APPENDIX FE. TOOL CONTACT INFORMATIONcciiieieiennienncennnnsn. 73
LIST OF ABBREVIATIONS AND ACRONYMS ... iiiiiiienierecceccecncncencns 9
GLOSSARY titiietteeeteaceeaesssesonsssassecsssnssccscscsasssacascnncnne 81

REFERENCES « v vttenteeesesesnsnensnsssesenssseseacasssassssansanases 85

vi

FIGURES

Figure 1. Adaptable RTSA Specification Fragmentccoiiiiiiiiiiiiiiin.. 11
Figure 2. Bus Controller Software Architecture DDCFragmentoocooiiiiiio... 12
Figure 3. Bus Controller Software Architecture DTI Fragmentoooiial.. 12
Figure 4. An Adaptable Requirements Componentcoiiiiieiaiinannnnnnnn.. 13
Figure 5. WordPerfect Macro Fragments for Generating ah SRS i i 14
Figure 6. A Screen From the Application Engineering Environment 14
Figure 7. A Generated Requirements Document Component [15
Figure 8. AKAMEL MAKE FunCtionvviiiiiiietiinieniiiiieeenecneanennnes 22
Figure 9. AKAMEL Decide SCIEeM . o vivttttiiiiiiiiirtiereennannnneneeansenannnns 23
Figure 10. AAA (Denali) Process Enactment Codeo.ovvieniiniinniiaiianin.. 24
Figure 11. Resulting Charge Line Query Dialog Windowc.cioiiiiiiiiiiaa.. 24
Figure 12. KAMEL-Generated Retrieve/Adapt Directives (Excerpt)ccevenvainn... 26
Figure 13. Interleaf ASCII Generated From Retrieve/Adapt Directives (Excerpt) 27
Figure 14. Final Generated Interleaf System/Segment Specification (Excerpt) 27

TABLES

Table 1. Rockwell CCSD Tool Usage Summaryoeeeeiiiiiiiinninneeenennneaaann 8
Table 2. A Decision Class From the System Bus DecisionModel, 10
Table 3. Navy/STARS Tool Usage SUMmAaryc.ceveenreneiniiieneuceeesennnennans 17
Table 4. SEE Infrastructure SUMMAryc.oieiiiuiinetitirnnerinnecennaanaass 23
Table 5. Summary of How FileMaker Pro Supports Synthesisccooiiiiiiiiiiiie., 49

viil

ACKNOWLEDGMENTS

Rich McCabe was the project manager and a contributor to this report. Other authors were Grady
Campbell, Ted Davis, Jeff Facemire, and Steve Wartik. Reviewers were Mark Blackburn, Mark
Tappan, and Steve Wartik. The efforts of the Rockwell and Boeing pilot projects were essential to our
understanding of how commercial tools can support a leveraged Synthesis process.

Acknowledgments

This page intentionally left blank.

EXECUTIVE SUMMARY

The leveraged Synthesis process, described in the Reuse-Driven Software Processes Guidebook, has
been in use by Rockwell and Boeing, including the ARPA-sponsored Software Technology for
Adaptable Reliable Systems (STARS) Demonstration Project with the Navy, since 1991. Although not
required for successful use of a Synthesis process, appropriate tools can make the process less
expensive and more effective.

This report analyzes the differing approaches to automation used by the Rockwell and Boeing
leveraged Synthesis pilot projects:

e Rockwell chose a limited-capability, low-cost approach, making use of commercial
off-the-shelf tools.

» Boeing undertook, as a major task of their project under the STARS program, to create an
extensive automated environment that would support their use of the process.

Both of these approaches have been successful in providing effective support for performing the
process. These two experiences are portrayed as prototypical scenarios that future adopters of
leveraged Synthesis might viably emulate. The analyses describe which activities the pilot projects
augmented with tools and how they used those tools.

As a foundation for understanding alternative approaches to tooling, a brief analysis of process-based
needs for methods and tools is provided. Based on pilot project and other experiences, this report
surveys the applicability of various types of commercially available tools in support of those needs.
Analysis of the pilot projects revealed two key points:

» Adopting a Synthesis process stimulates the adoption of standardized methods, particularly
for requirements and design.

* A pilot project can show the potential attainable with a Synthesis process without substantial
investments in tooling. However, realization of that potential requires commitment to use the
process by a business organization and standardization on preferred tools.

In conclusion, this report makes recommendations on how adopters should approach tooling and how
commercial tool vendors might provide more effective support for a leveraged Synthesis process.
Principal among these recommendations are to:

» Focus initially on the tooling needs of Application Engineering, which offers the greatest
opportunity for near-term payoff, and begin with readily available tools.

* Invest in tool enhancements that support creation and use of adaptable work products.

xi

In addition, an information model of Synthesis concepts is provided as a foundation for future tool

Executive Summary

» (Create project management tools that enable an iterative process, particularly emphasizing
milestones based on work product versioning.

The appendixes provide analyses of various tool-related questions:

» The Boeing environment is seen to be unique in providing support specifically oriented to a
leveraged Synthesis process. However, at this early stage in its development, work remains
before it fully supports the envisioned process.

» The FileMaker Pro database tool is seen to be useful, though greatly limited, as an enabling
mechanism for Application Modeling.

* Various document processors (FrameMaker, Interleaf, Microsoft Word, and WordPerfect)
are seen to provide capabilities for creating adaptable documentation and tailored instances.
Their capabilities are compared, along with an approach of embedded use of the TRF2
metaprogramming capability with a document processor tool.

¢ Reuse library tools are shown to have a role within a leveraged Synthesis process but a much
less visible one than conventionally expected.

development efforts.

xii

1. INTRODUCTION

1.1 OVERVIEW

This report is an analysis and survey of the needs and alternatives for automated support of a
leveraged Synthesis process as documented in the Reuse-Driven Software Processes Guidebook (RSP
Guidebook) (Software Productivity Consortium 1993). It describes automation needs relative to each
of the major activities of the process. Alternatives for automation are identified based on the
capabilities of generally accessible commercial tools. As a practical guide to how tools can be used,
this report describes previous experiences in the use of tools for two pilot projects: Rockwell
Command and Control Systems Division (CCSD) and the Boeing/Navy Software Technology for
Adaptable Reliable Systems (STARS) project. The appendixes provide detailed, but informal,
analyses on certain uses of particular tools, chosen to illustrate the potential for automated support
of a Synthesis process.

1.2 DOCUMENT AUDIENCE AND PURPOSE

The purpose of this report is to identify various current opportunities for more effective practice of
a leveraged Synthesis process through the attendant adoption of automated tools. This report is
targeted primarily to organizations that have begun to adopt a leveraged Synthesis process and wish
to enhance their practice with automated tools. This report is targeted secondarily to vendors of
commercial tools to understand how tools might be designed to support a leveraged Synthesis process
more effectively. Readers of this report are assumed to be familiar with the leveraged Synthesis
process as defined in the guidebook.

1.3 DOCUMENT STRUCTURE

This report discusses how automation can support a leveraged Synthesis process. It is organized as
follows:

* Section 2 defines informal requirements for the automation of a Synthesis process, including
needs for both methods and tools.

¢ Section 3 describes and compares the experiences with automated support for the leveraged
Synthesis process of the Rockwell CCSD pilot project and the Boeing/Navy STARS
demonstration project.

* Section 4 identifies alternatives for automated support, with commercially supported tools,
of the various activities of a leveraged Synthesis process.

* Section 5 summarizes the state of tool support for a leveraged Synthesis process and identifies
potential improvements that tool vendors might pursue.

1. Introduction

e Appendix A is an informal evaluation of the Boeing Software Engineering Environment
(SEE) for use as a leveraged Synthesis Application Engineering Environment.

e AppendixBisaninformal evaluation of the FileMaker Pro tool as a mechanism for automated
support of Decision Modeling and Application Modeling.

» Appendix C is an analysis of how organizations can create adaptable documentation using
commercial document processors.

* Appendix D is a draft information model for automated support of a leveraged Synthesis
process.

* Appendix E is a discussion of reuse library tools and how they are used within a leveraged
Synthesis process.

e Appendix F is a listing of all the tools mentioned in this report and contact information for
their respective vendors.

1.4 TYPOGRAPHIC CONVENTIONS

This report uses the following typographic conventions:

Seriffontcoioiiiiilt General presentation of information.
Italicized seriffont Publication titles.

Boldfaced seriffont Section headings and emphasis.
Boldfaced italicized seriffont Run-in headings in bulleted lists.

2. NEEDS FOR METHODS AND TOOLS

This section identifies the needs associated with a leveraged Synthesis process for software
engineering methods and tools. To institute such a process, an organization must choose a set of
software methods to tailor the processdefinition into a practicable process. In addition, they can select
supporting tools and further tailor the process definition to make performance of the process easier
or more efficient.

2.1 METHOD NEEDS

To be complete, a leveraged Synthesis process must be elaborated with an organization’s preferred
methods for:

* Management (in Domain Management)

* Requirements analysis and specification (in Product Requirements and Process
Requirements)

* Design and implementation (in Product Design, Product Implementation, and Process
Support Development)

e Verification (in Domain Implementation and Domain Verification).

Examples of such methods, respectively, are the Consortium’s Evolutionary Spiral Process (ESP)
method, the Consortium Requirements Engineering (CoRE) method, the Consortium’s Ada-based
Design Approach for Real-Time Systems (ADARTS®) method, Ada Quality and Style, and the
Cleanroom correctness verification method (Hausler, Linger, and Trammell 1994). There are
numerous other equivalent methods, including process-oriented (e.g., structured), data-oriented
(e.g., information engineering), and object-oriented methods. Alternatively, even commonly
practiced ad hoc methods suffice from a process perspective as long as their use is standardized by the
organization for adomain. Within the context of any particular domain, one method of each type must
be chosen as the standard to be followed. The set of methods chosen must be sufficiently compatible
to allow integrated use and information traceability among the work products of the methods.

2.2 TOOL NEEDS

Although a leveraged Synthesis process can be performed entirely manually, there is obvious benefit
in augmenting and supporting it with appropriate automation. Automation can be custom-built, com-
mercial off-the-shelf, or a combination. Because no commercially supported tools have yet been de-
signed specifically to support family-based development, their application must be considered with
care and introduced in ways that do not conflict with the needs of Synthesis activities. However, the

2. Needs for Methods and Tools

utility of commercial tools must be optimally exploited to minimize the need for investment in custom
tool development by organizations for which tool development is not a business objective in its own

right.

2.2.1 DOMAIN MANAGEMENT

Domain Management requires tools for planning, monitoring, and controlling the activities of the
Domain Engineering effort and its comprising increments. This includes capabilities to define tasks

~with associated objectives, schedule the tasks, assign them to individuals or teams, and track progress

against a plan. In addition, tools for configuration management support controlling the versions of the
Domain Engineering product as a set of evolving work products. Tools for quality assurance support
controlling the quality of the Domain Engineering process in practice and of its product.

2.2.2 DOMAIN ANALYSIS
Domain Analysis requires tools for:

 Organizing information at both a conceptual and a formal semanticlevel, including definitions
of terms and relationships

* Specifying the requirements and design of the systems encompassed by a domain

» Specifying the process of Application Engineering within the domain and the forms by which
information describing any particular system is presented and analyzed

» Verifying the content and quality of Domain Engineering work products

2.2.3 DOMAIN IMPLEMENTATION
Domain Implementation requires tools for:

* Implementing and verifying adaptable forms of application work product components

» Implementing and verifying mechanisms for the instantiation and composition of adaptable
work product components into complete instance work products

» Implementing the Application Engineering process specified by Domain Analysis

* Documenting the Application Engineering process and supporting automation for
application engineers

» Supporting installation of automation in project environments

2.2.4 NEEDS FOR PROJECT SUPPORT

Project Support primarily uses the tools provided by Domain Implementation to validate Application
Engineering Process Support (the Domain Engineering product) and deliver it to client application
engineering projects. The only additional tool needed is for the recording of problems and needed
improvements discovered as the Application Engineering process is performed.

2. Needs for Methods and Tools

2.2.5 ArprLICATION ENGINEERING

Application Engineering uses the tools provided by Domain Engineering to produce an Application
Product for a customer. Decisions on appropriate tooling are the responsibility of Domain
Implementation, as part of the Process Support Development activity.

2. Needs for Methods and Tools

This page intentionally left blank.

3. TYPICAL TOOLING SCENARIOS

This section describes two major efforts using the leveraged Synthesis process: Rockwell’s
communications control and management systems projects and the Boeing/STARS/Navy training
systems Demonstration Project. This section includes a summary of each effort relating to the
methods and/or tools used to support the Synthesis activities. It includes selected artifacts illustrating
the two approaches. This section identifies opportunities for improved tooling, and it closes with an
analysis and comparison of the situational factors that led to differences in how Rockwell and Boeing
STARS applied Synthesis.

3.1 ROCKWELL CCSD PILOT PROJECT SCENARIO

In December 1990, the CCSD of Rockwell initiated a Consortium-assisted pilot project to evaluate
the applicability of the leveraged Synthesis process to Rockwell’s software engineering needs. CCSD
application of a Synthesis process has resulted in the production of a partially automated environment
that supports the specification of a system in the targeted CCSD domain and the generation of
corresponding software requirements, design, and code.

A domain-specific notation created by the project lets an engineer describe a system in terms of
high-level requirements and engineering decisions. A corresponding product is generated by
mechanically selecting, adapting, and composing reusable components based on the decisions
expressed in the specification. The utility of this environment has been demonstrated through
successful creation of parts of two products and limited use on a current CCSD project.

CCSD has applied the Synthesis methodology to two domains. First, CCSD focused on the
Communications Control and Management domain, specifically the software that supports
communication over the MIL-STD-1553B system bus. During this effort, CCSD developed a tools
approach for specifying and generating software work products. CCSD is now applying this same
approach to their business area of Multimedia Message Handling Systems.

This section describes CCSD’s use of tools in the application of the Synthesis methodology. O’Connor
et al. (1994) describe CCSD’s experience in applying Synthesis to the MIL-STD-1553B system bus
domain.

3.1.1 TooL USAGE SUMMARY

Table 1 summarizes CCSD’s use of tools in support of Synthesis activities. It indicates the methods
and tools used and states how the indicated tools support the corresponding activity. References to
“RSP” in the Method column mean that the project performed the activity following only the general
guidance provided by the RSP Guidebook (Software Productivity Consortium 1993). References to
“ad hoc” mean that the project did not fully apply RSP guidance for an activity.

3. Typical Tooling Scenarios

Table 1. Rockwell CCSD Tool Usage Summary

Activity Method Tool Tool Usage -
Domain Management RSP Timeline Scheduling and tracking domain
PERT development activities.

Domain Definition RSP WordPerfect |Documenting the Domain Synopsis,
Glossary, and commonality and variability
assumptions.

Decision Model RSP Word Perfect |Documenting decisions to resolve

GEM Draw |variabilities in the form of tables and define
decision variables.

Product Requirements RTSA OpenSelect |Developing data flow and control flow
diagrams to specify Product Requirements.
Annotated with decision variables to denote
variations.

Process Requirements Ad Hoc NA NA

Product Architecture ADARTS | WordPerfect |Documenting and illustrating an ADARTS

GEM Draw |design for the product family. Annotated
with decision variables to denote variations. |

Component Design PDL WordPerfect | Documenting specifications for Adaptable

GEM Draw |Components. Parameterized with the
decision variables.

Generation Design Ad Hoc NA NA

Domain Verification RSP NA NA

Component Implementation RSP WordPerfect |Implementing adaptable documentation
components with WordPerfect macro |
variables.

Ada, C Implementing adaptable Ada and Csoftware |
TRE2 components. _
Generation Implementation RSP WordPerfect |Implementing a menu-based Application
* | Modeling and generation environment for
producing documentation and software work
products using WordPerfect macros and
merge capabilities.

Process Support Development RSP WordPerfect | Developing user documentation.

Project Support RSP

Application Engineering RSP WordPerfect |Specifying applications and automatically

Ada, C generating work products.

As the table indicates, CCSD relied principally on Synthesis for process and method guidance. CCSD
recognized the value of Synthesis as a disciplined engineering process; they discovered that attaining
its full potential required acceptance of disciplined engineering methods as well. Synthesis does not
dictate particular methods and, in fact, only requires (as a minimum) standardization of the way prod-
ucts are represented. However, Synthesis provides a framework within which organizations can adopt
disciplined methods without having to retrain every engineer.

3. Typical Tooling Scenarios

CCSD complemented the Synthesis methodology with Real-Time Structured Analysis (RTSA),
ADARTS, and a Program Design Language (PDL). CCSD found these methods to be very useful in
promoting reusability but noted that representing variation in graphical requirements and design
methods was a very difficult problem. Section 3.1.2.1 illustrates how CCSD handled this problem.

CCSD focused their automation efforts on the Application Engineering process. Their motive was
based on their experience that automated processes would be more readily accepted by the targeted
users (i.e., in-house engineers) and would make them more receptive to the concepts of Synthesis.
CCSD developed the Application Engineering environment through an innovative use of
WordPerfect macros and merge capabilities on a Windows/PC platform. The environment enabled
application engineers to interactively specify decisions to model an application and generate the
application work products from Adaptable Components. Section 3.1.2.2 jllustrates CCSD’s use of

. WordPerfect macros.

CCSD’s automated support for domain engineering was primarily used for documenting domain work
products, such as the Domain Synopsis, Glossary, and Assumptions. Furthermore, in the case of prod-
uct architecture design, CCSD used documentation tools to support ADARTS rather than tools that
have semantic knowledge of the ADARTS notation, such as ObjectMaker. In addition, no automation
was used to support configuration management. CCSD’s use of OpenSelect for Product Require-
ments and WordPerfect for generation implementation are notable exceptions; CCSD could use these
tools to analyze the work products as well as document them. Nonetheless, Domain Engineering is
a strong candidate for further automation support. '

3.1.2 ProOCESS ARTIFACT AND TooL WALKTHROUGH

A central concept in a Synthesis process is the management of variation. How well an organization
identifies, controls, and implements variabilities directly impacts the organization’s reuse effective-
ness. Dealing with the large number of legitimate variabilities that occur in a domain and their inter-
relationships can be a very complex and overwhelming task. Managing variation thus presents an
opportunity and challenge for tool support.

Current off-the-shelf tools were not designed to accommodate variation. However, as CCSD
demonstrated, off-the-shelf tools can provide sufficient support under certain circumstances with
some improvising. This section illustrates how CCSD used tools to manage variation by walking
through selected artifacts from their Domain Analysis, Domain Implementation, and Application
Engineering activities, leading to the automatic generation of a Software Requirements Specification
(SRS).

3.1.2.1 Domain Analysis

The objectives of Domain Analysis are to determine the scope of the domain, capture domain
knowledge, and specify the product family and Application Engineering process. The products of
Domain Analysis include the Domain Definition and Domain Specification.

Domain Definition. The Domain Definition is an informal description of systems in a business area
and characterizes how the systems are similar and how they differ. CCSD developed a Domain Synop-
sis, Glossary, and Assumptions in accordance with the RSP Guidebook to make up the Domain Defi-
nition. These products are textual in nature, thus CCSD used WordPerfect as a documentation tool
to record the Domain Definition.

3. Typical Tooling Scenarios

The Domain Assumptions describe what is common, variable, and excluded among systems in the
domain. This represents the beginning point for the management of variation. Here, commonalities
and variabilities were identified in simple lists. A commonality from the system bus domain is:

All systems communicating over the system bus will use the MIL-STD-1553B protocol.
Variabilities in the system bus domain include:

Subsystems communicating over the system bus vary in their amount of RAM and ROM, type of
processor, and 1553B chip set.

Domain Specification. The commonalities and variabilities, and other Domain Definition products,.
provide the basis for developing the Domain Specification. The Domain Specification is a precise
specification of the problems and solutions supported by the domain, as well as the Application Engi-
neering process for building systems in the domain. CCSD developed a decision model, Product Re-
quirements, and Product Design in accordance with the RSP Guidebook to comprise the Domain
Specification. CCSD did not formally develop Process Requirements.

Table 2 illustrates a portion of CCSD’s decision model for the system bus domain. The decision model,
which CCSD represented as a WordPerfect table, identifies the Application Engineering
requirements and engineering decisions that determine how product family members vary. CCSD
created the decision table by elaborating their variability assumptions; related decisions were grouped
together in a decision class. Note that CCSD associated a decision variable (e.g., SSID, SSRAM, etc.)i
with each decision. CCSD used these decision varjables throughout the process as a means to denote:
variations.

Table 2. A Decision Class From the System Bus Decision Model

Decisions Value Space Description
Subsystem Identifier[SSID] | identifier Unique identifier for a 1553B
subsystem
RAMI[SSRAM] hex [(0 .. ™)) Amount of random access
4 memory
ROM[SSROM] hex [(0.. 7)] Amount of read only memory
Processor[SSPROC] enum of (Type of subsystem processor
Intel80186,
Intel80286,
Intel80386
)
1553B Chip Set [SSCHIP] |enum of (Type of MIL-STD-1553B
UT1553B BCRT, |hardware
CT-1612,
DDC BUS-65515,
DTI-1121
)

CCSD developed the Product Requirements using OpenSelect to create a parameterized RTSA work
product. The Product Requirements define the requirements for a product family and are adaptable
to the decisions supported by the decision model. OpenSelect did have an inherent understanding of
the RTSA method, but did not have an inherent ability to denote variations. CCSD compensated for

10

3. Typical Tooling Scenarios

this by using OpenSelect’s leveling capability to decompose RTSA data transformations (i.e.,
“bubbles”) into multiple versions corresponding to alternative decision model choices. CCSD then
annotated the data transformations with the decision variables to denote the variations. Figure 1
shows how the RTSA specification varies due to the SSCHIP decision being UT1553B BCRT, CT-1612
or DDC BUS-65515. It represents a decomposition of the Monitor Subsystem Hardware data
transformation. In this case, CCSD used the SSCHIP decision variable to indicate alternative data
transformations.

if <<SSCHIP>> = UT1553B BCRT if <<SSCHIP>> = CT-1612 if <<SSCHIP>> = DDC BUS-65515

1553 Message 1553 Message 1553 Message
Rc,:ady Rt,aady : Re,:ady
1553 Message / 1553 Message / 1553 Message /
Segment / Segment / Segment /
Monitor N
United Monitor DDC
Technology Hardware
Hardware Hardware (DDC
(UT1553B) BUS-65515)
1553 Hardware 1553 Hardware 1553 Hardware
Status } Status | Status |
v v v
endif endif endif

Figure 1. Adaptable RTSA Specification Fragment

The Product Design specifies the design for the product family, rather than for a single product. Like:
a single Product Design, however, the family Product Design must satisfy its Product Requirements..
Like the Product Requirements, the Product Design must be adaptable to the decisions allowed by
the family’s decision model. The Product Design is composed of the product architecture, component
design, and generation design.

CCSD developed the product architecture using the ADARTS methodology with GEM Draw. Unlike
OpenSelect, GEM Draw did not understand the semantics of the method’s notation. Similar to the
Product Requirements, CCSD parameterized the design according to the decision model except that
in this case CCSD used multiple diagrams to denote design variations. CCSD resorted to multiple
diagrams rather than using a single, annotated diagram to showvarying transformationsasin Figure 1,
because a single ADARTS diagram would have been overly complicated by the annotations. Figures 2
and 3, respectively, show how the architecture varies due to the SSCHIP decision being either DDC
BUS-65515 or DTI-1121. This technique, although limited, worked because the architecture was
relatively invariant with respect to decision Model Choices.

For the component design, CCSD represented variation in the specification of Adaptable
Components using parameterized PDL. CCSD did not formally develop a generation design.

3.1.2.2 Domain Implementation

Domain Implementation is an activity of domain engineering for implementing product and process
support for Application Engineering. The objectives of Domain Implementation are to create
Adaptable Components and generation procedures as specified in the Product Design and to create
a standardized Application Engineering process as specified in the Process Requirements.

11

3. Typical Tooling Scenarios

DDC Descriptor
Register Stack

DDC
Hardware

A

vent
1] =

y

EOM
DDC_Process BCEOM
Error

RT _Response_W _Service_Request
RT_Response_ W_SS_Flag
RT_Response_ W_Dynamic_Accept
RT _Response W _Busy
RT _Response
No_RT_Response
Init_Done

Figure 2. Bus Controller Software Architecture DDC Fragment

Bus_Event_
Manager

DTI
Register

DTI
Hardware

Q Block DTI
= Event
Q Block Y))
Bus Event Power-Up High priority
us_Event_ interrupt
e
RT Response W_Service_Request Standard
RT _Response_W_SS_Flag interrupt

RT_Response W_Dynamic_Accept
RT_Response_W_Busy
RT_Response
No_RT_Response
Init_Done

Figure 3. Bus Controller Software Architecture DTI Fragment

Adaptable Components. A component is any work product fragment (e.g., software, documentation,
test scripts, etc.) produced during the Application Engineering process. CCSD developed adaptable
requirements, design, and code components.

* Adaptable Requirements Components. These components are used to produce software
requirements specifications for systems in the domain. The Product Requirements developed
during the Domain Analysis determined the content of these components. Customer

12

3. Typical Tooling Scenarios

requirements determined the form of the work products. CCSD used WordPerfect to create
requirements components that could be automatically adapted based on Decision Model
choices. WordPerfect’s merge and macro features allow many document variations to be
produced from a single template. Figure 4 shows a fragment of an adaptable requirements
component represented using WordPerfect.

~a.{VARIABLE}ssid ~ configuration. The {VARIABLE }appl ~ application soft-
ware and the interprocessor communications software in the {VARIABLE }ssid ™
subsystem will be stored in ROM and executed on an { COMMENT}

~ {IF}{FIELD}ssproc~ =1~ Intel80186 {ENDIF}{COMMENT}

~ {IF}{FIELD}ssproc ~ =2~ Intel80286 {ENDIF}{COMMENT}

~ {(IFH{FIELD}ssproc~ =3 ~ Intel80386 {ENDIF}{ COMMENT}

processor. The {VARIABLE}ssid ™~ subsystem contains {VARIABLE}ssrom~K
of ROM and {VARIABLE}ssram ~ K of RAM. The {VARIABLE }appl ~ applica-
tion uses the MIL-STD-1553B bus to exchange messages with applications existing
in other subsystems in the network. The {VARIABLE}appl ~ application commu-
nicates over the MIL-STD-1553B bus(es) via the terminal(s) described below.

Figure 4. An Adaptable Requirements Component

» Adaptable Design Components. The design components are used to produce software design
specifications for systems in the domain. The content of these components was determined
from the Product Design developed during the Domain Analysis. As with the adaptable require-
ments components, customer requirements determined the form of the work products, and CCSD
implemented these components using WordPerfect.

o Adaptable Code Components. CCSD implemented code components in Ada, using
interchangeable components (i.e., different implementations of a single interface), Ada
generics, and the Consortium’s TRF2 metaprogramming notation as mechanisms to
represent a family of components.

Generation Procedures. A generation procedure is a precise description of how to derive application
work products consistent with the decisions in an Application Model. CCSD automated the genera-
tion procedure to provide an Application Engineering environment. The environment consists of a
graphical interface and a generation facility, both developed using WordPerfect merge and macro func-
tions. The graphical interface, which consists of a sequence of menus and screens, allows the engineer
to create, modify, and browse through an Application Model. The specification language is based di-
rectly on the decision model for the domain. The generation facility uses the Application Model to
guide the automatic generation of a software requirements document from adaptable requirements
components. The adapted documentation is generated by performing a WordPerfect merge of the
adaptable requirements components and the engineer’s decisions from the Application Model.

Figure 5 lists fragments of the generation procedure (implemented with WordPerfect macros) for
generating an SRS. The first merge operation loads previously recorded decisions (from file
sysxxx.sf!) made by an application engineer. The second merge operation instantiates the adaptable
SRS component (in file srsshell.pf!) with the decisions to produce the actual SRS (in file srs.wpf).

13

3. Typical Tooling Scenarios

FORMTYPE:=2
FORMFILE:= “set_syst.pf!”
DATATYPE:=2
DATAFILE:= “sysxsx.sf!”

MergeRun(FORMTYPE;FORMFILE;DATATYPE;DATAFILE;OUTTYPE)

FORMTYPE:=2
FORMFILE:= “srsshell.pf!”
DATATYPE:=0
OUTTYPE:=2
OUTDATA:="“srs.wpf”

MergeRun(FORMTYPE;FORMFILE;DATATYPE;;OUTTYPE;OUTDATA)

Figure 5. WordPerfect Macro Fragments for Generating an SRS

3.1.2.3 Application Engineering

Application Engineering is a process for creating and supporting an Application Product that satisfies
specified customer needs. The application engineer develops a product by resolving the requirements
and engineering decisions as identified in the decision model. The resultis an Application Model. The
Application Modelis then used to drive the generation of the work products from the Adaptable Com-
ponents. The WordPerfect-based environment developed by CCSD automates this process of Ap-
plication Modeling and product generation. Figure 6 shows one of the screens from the graphical
interface, corresponding to the decision class shownin Table 2. Figure 7 shows a portion of a generated
software requirements specification that was produced by tailoring the Adaptable Component shown
in Figure 4 using the decision choices shown in Figure 6.

3.1.3 TooLING IMPROVEMENT OPPORTUNITIES

CCSD’s approach to managing variation and automation, as illustrated in the walkthrough,
demonstrated that off-the-shelf tools can be used effectively to provide low-cost support for the

Subsystem Information
1. Subsystem Identifier: : Mission Control 1
2. Processor: Intel 80386
3. ROM: 4096K
4. RAM: 4096K
1553B Chip Set: CT-1612
6. Save Subsystem

Figure 6. A Screen From the Application Engineering Environment

14

3. Typical Tooling Scenarios

developers to rapidly specify and generate systems in their domains. CCSD’s domains were amenable
to CCSD’s automation approach; that is, the variations largely consisted of alternate configurations
of similar systems allowing for simple substitution of alternate solutions. CCSD’s automation
approach may be less effective in domains where there are more complex variations.

1.2.1.1. Mission Control 1 configuration. The RICC application software and the in-
terprocessor communications software in the Mission Control 1 subsystem will be
stored in ROM and executed on an Intel 80386 processor. The Mission Control 1
subsystem contains 4096K of ROM and 4096K of RAM. The RICC application uses
the MIL-STD-1553B bus to exchange messages with applications existing in other
subsystems in the network. The RICC application communicates over the MIL-

STD-1553B bus(es) via the terminal(s) described below.

Figure 7. A Generated Requirements Document Component

The following list describes additional opportunities for automation support, which build on the
capabilities established by CCSD:

Variation Representation and Analysis. Current computer-aided software engineering (CASE)
tools, such as OpenSelect, do not have a built-in capability to represent variation. CCSD was
able to work around this problem using annotations and replication. In CCSD’s domains, this
approach was sufficient; however, as variations become more complex, this approach may be-
come more complicated. To further assist engineers in managing complex variations, tools are
needed that support variation analysis (e.g., for completeness and consistency) and generation
of different instantiations. Providing this capability would require that tools be able to perform
operations on variations as well as provide a notation to represent them.

* ADARTS Support. Drawing tools, such as GEM Draw, do not understand the semantics of the

ADARTS notation and, thus, have no ability to assist a developer in analyzing and verifying
their designs. Tool support for ADARTS does exist; however, for CCSD’s technique tomanage
variation, the tool needs to have the ability to decompose a design into multiple levels of ab-
straction so that variabilities may be isolated. '

Tool Integration. CCSD used their WordPerfect-based Application Engineering environment
to generate SRSs. These specifications incorporate the data flow diagrams and process specifi-
cations that CCSD developed with OpenSelect. To accomplish this, however, CCSD must
manually export the diagrams from OpenSelect then manually import them into WordPerfect.
The result is that CCSD now must ensure that both copies are the same; that is, when any
changes are made to a data flow diagram, it must be exported and imported again to ensure
integrity. If these tools were integrated so that the diagrams could be shared, then the integrity
could be ensured and unnecessary manual procedures could be eliminated.

User Interface Generation. CCSD currently uses WordPerfect macros to implement the user
interface for Application Modeling and work product generation. The number of macro
programs to implement this interface is directly proportional to the number of variations. The
use of macros works well when the number of variations is reasonably small, but may become
unwieldy when the number of variations grows large. An alternative approach would be to
generate the user interface from the Decision Model.

15

3. Typical Tooling Scenarios

Decision Modeling. As seen in CCSD’s approach, the Decision Model impacts many activities
and products. Thus, tools that support the creation and use of the decision model could have
a significant benefit to domain and application engineers. Possible areas of support include:

— Maintaining traceability of decisions to variability assumptions

Tracking dependencies between decisions
— Analyzing decisions for completeness, consistency, and redundancy

—~ Managing model decomposition and iterative development by multiple teams

3.2 BOEING/NAVY STARS DEMONSTRATION PROJECT

The Advanced Research Projects Agency (ARPA) STARS program was established in 1983 to address
pervasive and severe cost, schedule, and quality problems associated with all aspects of software
development. The program mission is to demonstrate megaprogramming, a process-driven,
domain-specific, reuse-based approach to software engineering that is supported by appropriate tool
and environment technology (STARS 1994b). To execute this mission, the STARS program
established three teams to jointly develop the concepts and technology necessary to implement
megaprogramming. These teams, consisting of major defense systems companies paired with a
government service organization, are Boeing/Navy, UNISYS/Army, and Loral/Air Force (formerly
IBM/Air Force). Each of these prime teams is chartered to demonstrate STARS technology on real,
operational, software-intensive systems.

The Navy/STARS Demonstration Project elected to use the development of the T-34C flight
instrument trainer (FIT), sponsored by the Naval Air Warfare Center Training Systems Division
(NAWCTSD), to demonstrate the benefits of megaprogramming. The Navy/STARS Demonstration
Project also elected to consider the Consortium’s Synthesis methodology as an approach to
megaprogramming,.

In March 1992, the Navy/STARS Demonstration Project initiated a Consortium-assisted pilot project
(as part of their Demonstration Project) to evaluate the applicability of a leveraged Synthesis process.
This pilot project has continued (and is continuing) through three phases of development on the Navy/
STARS Demonstration Project. The Demonstration Project initially tested the Synthesis methodolo-
gy in a phase called Trial Usage. This phase, which lasted from April 1992 through June 1992, applied
Synthesis to a small portion of the Air Vehicle Training System (AVTS) domain: the Environment sec-
tion dealing with the external environmental conditions of the trainer (e.g., atmosphere). The second
application of Synthesis was in a phase called Pilot Usage. This phase lasted from July 1993 through
January 1994 and focused on applying the Synthesis methodology to a broader range of trainer func-
tionality: Radio Navigation Aids for T-series aircraft, while also addressing several other goals. These
goals included:

e The training of Demonstration Project personnel on the Synthesis process

* The customization of the Synthesis process to the particular needs of the Demonstration
Project

* The creation of an initial SEE capability to support Application Engineering

16

3. Typical Tooling Scenarios

* The education of Navy personnel regarding the management and eventual procurement of
systems using a product-line approach for training systems

e Handling geographically dispersed teams for joint development of a domain

The Navy/STARS Demonstration Project is currently in the “Demo” phase of the project’s life cycle.
In this phase, the project will apply Synthesis to a majority of the functional areas of the T-series trainer
domain and will produce a T-34C FIT in 1995 from this domain. This phase will also see improve-
ments, including SEE capabilities, to support the activities of Domain Engineering, and a clearer dis-
tinction between Domain Engineering and Application Engineering teams. This phase began in
February 1994 and is scheduled for completion in September 1995.

The final capability of this Navy/STARS Demonstration Project will be an automated environment
for the specification and automatic generation of software and supporting documentation for T-series
trainers. The products will be generated by mechanically selecting, adapting, and composing reusable
components based on the decisions expressed in the specification.

The overall reaction (to date) of applying a product -line approach (i.e., Synthesis) to the development
of training systems has been positive. Though scemingly complex at times, the megaprogramming ap-
proachto developing and maintaining a product line of training systems has begun toyield results. The
Application Engineering of systems (for the current state of the domain) is a very rapid, low-cost, and
repeatable process, based on the principles of continuous process improvement and systematic reuse..

This section describes the Navy/STARS Demonstration Project’s use of tools in the application of the
Synthesis methodology.

3.2.1 TooL USAGE SUMMARY

Table 3 summarizes Boeing/Navy/STARS’s use of tools in support of the Synthesis activities. It
indicates the methods and tools used and states how the indicated tools support the corresponding
activity. References to “RSP” in the Method column mean that the project performed the activity
following only the general guidance provided by the RSP Guidebook (Software Productivity
Consortium 1993). References to “ad hoc” mean that the project did not fully apply RSP guidance for
an activity.

Table 3. Navy/STARS Tool Usage Summary

Activity Method Tool Tool Usage
Domain Management RSP DecPlan - Scheduling and tracking domain
PERT development activities.
Interleaf and Risk management plans.
IslandWrite
Domain Definition RSP Interleaf and Documenting the Domain Synopsis,
IslandWrite Glossary, commonality and variability
' assumptions.
Decision Model RSP Interleaf and Documenting decisions to resolve
IslandWrite variabilities in the form of tables and
define decision variables.

17

3. Typical Tooling Scenarios

Table 3, continued

Activity Method Tool Tool Usage
Product Requirements Ad hoc Interleaf and Developing requirements descriptions
IslandWrite and diagrams with the descriptions
annotated with decision variables to
denote variations.
Process Requirements RSP Interleaf and Documenting an automated process for
IslandWrite specifying application systems and |
generating deliverables.
Product Architecture Structural Interleaf and Documenting and illustrating a DARTS
Modeling IslandWrite architecture for the product family. |
Annotated with decision variables to |
denote variations. :
Component Design Ad hoc Interleaf and Documenting specifications for
IslandWrite Adaptable Components. Parameterized |
with the decision variables.
Generation Design RSP Interleaf and Documenting mappings for building ’
IslandWrite systems.
Domain Verification RSP DECAda Testing Adaptable Components by §
Specialized ADAPT | applying specific decisions to an ADAPT |
routines routine to produce Ada-compilable |
KAMEL component instances.
Denali X
Component Implementation RSP Interleaf and Documenting the component’s |
IslandWrite implementation. (
DEC Editors, Implementing adaptable Ada software |
DECAda components. '
Generation Implementation RSP Interleaf and Documenting the generation procedure.
IslandWrite
Element Editors and | Populating the SEE with CLIPS rules
Navigators (part of KAMEL) for performing
' retrieval and adaptation of components.
Process Support RSP Interleaf and Documenting the standards, guides, and
Development IslandWrite training for Application Engineering.
Element Editors | Populating the SEE with CLIPS rules |
(part of KAMEL) for performing }
Application Modeling (i.e., presenting
questions and retrieving decision
responses), and constructing process
descriptions and code for describing and
enacting the SEE processes
Project Support RSP

18

3. Typical Tooling Scenarios

| Activity Method Tool Tool Usage
Application Engineering — RSP Amadeus, Specifying applications and automatically
Basic Infrastructure CDD/Administrator, | generating work products.
CDD/Repository,
DecPlan,
DECWindows,
Interleaf,

Process Engine,

ROAMS, VMS
Application Engineering — RSP Amadeus, DecPlan, | Management of specifying applications
Project Management Process Engine and automatically generating work

products.
Application Engineering — RSP Element Editors, | Specifying applications.
Application Modeling KAMEL,
Navigators, Process
Engine

Application Engineering — RSP Process Engine, Automatically generating work products.
Application Production ROAMS
Application Engineering — RSP NA NA
Delivery and Operations
Support

Table 3, continued

Asthetableindicates, the Navy/STARS Demonstration Project relied principally on the Consortium’s
RSP Guidebook (a.k.a., Synthesis) for process guidance. The Demonstration Project recognized the
value of Synthesis as a disciplined engineering process and decided to augment the guidebook with
domain-specific extensions (i.e., the next lower level of process guidance).

The Navy/STARS Demonstration Project has primarily focused their automation efforts on the AE
process which is embodied in a SEE. Their environment is built upon a rather extensive toolset avail-
able on DEC platforms. Through use of DEC tools, integration standards, and custom tools, the dem-
onstration project was able to produce a turnkey environment that allows a team of application
engineers to interactively specify decisions distinguishing an application and generate the application
work products from Adaptable Components. The Application Engineering environment also inte-
grated many capabilities that exist separately in other environments, namely measurement, project
management, and configuration management.

Users of the SEE do not actively need to address the collection of metrics or the management of
versions of work products. All of this is handled behind-the-scenes and unobtrusively. Project
management and project tasking drive what application engineers work on at any given point in time.
Users are assigned tasks that are activated when all necessary preconditions exist and are not allowed
to “complete” until all required steps have been performed. Extensive on-line descriptions of the
user’s tasks and processes help guide the user in performing tasks.

In the upcoming phase of the Navy/STARS Demonstration Project, the SEE will begin to provide
some support for Domain Engineering activities. Currently, however, Domain Engineering is still
largely a manual process with tool support primarily documenting results. Notable exceptions here

19

3. Typical Tooling Scenarios

include PERT tools for project management, fundamental navigating/editing tools available through
the SEE framework, and some custom tools for aiding component adaptation.

Tool integration is a major focus in the Navy/STARS SEE. The SEE infrastructure, being based upon
an integrated DEC toolset, comes with a lot of tool integration already packaged by DEC. This
allowed for seamless integration of DEC planning, editing, and storage/retrieval tools. However,
additional tooling requirements were necessary to meet the needs of the Navy/STARS Demonstration
Team and of automation of parts of Synthesis’ Application Engineering process. The Navy/STARS
SEE developers integrated non-DEC tools into the SEE based on an extended ATIS (A Tool
Integration Standard) type hierarchy for object-oriented information sharing among tools.

3.2.2 PROCESS ARTIFACT AND ToOL WALKTHROUGH

This section presents selected Synthesis activities and artifacts and discusses how tooling helped the
Navy/STARS Demonstration Project to accomplish a Synthesis process.

The following descriptions (Sections 3.2.2.1 through 3.2.2.3) reflect the tooling capability that existed
through the Trial Usage and Pilot phases of the Navy/STARS Demonstration Project. However, in the
current, and final, phase of the Navy/STARS Demonstration Project, active support for Domain Engi-
neering activities will be incorporated into the SEE. Initially, this will likely take the form of electronic
traceability between Synthesis artifacts according to the interrelationships described in the RSP
Guidebook (Software Productivity Consortium 1993). Eventually, though, the SEE support for Do-
main Analysis activities is expected to provide interactive assistance in performing the various activi-
ties where the assistance is activity-sensitive and at the appropriate level of abstraction to be useful
to the domain engineer.

3.2.2.1 Domain Analysis

Most of the Domain Analysis activities on the Navy/STARS Demonstration Project were
accomplished by engineers drafting work products on paper and then capturing the results in some

- electronic form. The preferred electronic medium was Interleaf on DEC platforms and IslandWrite

on Sun platforms. The exception to this was in the area of project management where DecPlan was
used for performing project management. PERT charts were available in DecPlan for laying out
activity and resource time lines and allocations.

The tabular formatting capabilities in tools such as Interleaf, however, proved to be a good
organization mechanism for the tabular information contained in some Synthesis artifacts (e.g.,
Decision Models and Generation Design).

3.2.2.2 Domain Implementation

The activities of Domain Implementation are split into those implementing the product and those
developing the process support.

The primary tools used for accomplishing Product Implementation were conventional editors and
compilers. Even though text editors on the various platforms were available for the creation of the
Product Implementation, all of the work was eventually migrated to the DEC platforms where it was
compiled, debugged, and stored.

20

3. Typical Tooling Scenarios

The Process Support Development was more nonconventional, consisting of the development of the
underlying SEE framework followed by the population of the SEE with the products of Domain Engi-
neering (i.e., Adaptable Components and support for the activities of the Application Engineering
process). The primary SEE development (performed by Boeing in Seattle, WA), occurred entirely
within the DEC environment (including DEC compilers, editors, and CM).

The primaryinterface to the SEE used for population of the SEE was through Navigators and Element
Editors. Navigators are essentially browsers for viewing repository information in various ways; Ele-
ment Editors are used to access and/or modify particular objects within the repository. Though this
helped to automate some of the process, it was still largely a manual process. The SEE population staff
needed to perform activities such as:

* Creating the domain-specific activities and activity descriptions
» Placing the Adaptable Components into the repository
* Writing KAMEL code for retrieving and adapting the components

Even though all of these activities enabled a much more efficient Application Engineering process,
the tool support for these Domain Engineering activities was minimal. However, some of the compo-
nents of the SEE, designed to improve the Application Engineering capability, proved beneficial to
the domain engineering staff. One of the custom tools produced by the SEE developers, KAMEL, en-
abled the creation of screens for obtaining decisions (i.e., an Application Model) from an application
engineer. KAMEL code (such as that shown in Figure 8) is Lisp-like, but is able to produce interfaces
(such as that shown in Figure 9) that will handle the interaction with the application engineer for re-
trieving answers to questions (i.e., decisions). Another custom tool performed adaptation of Adapt-
able Components within the SEE. This adaptation tool was used by the Product Implementation staff
for testing Adaptable Components by creating specific instances of Adaptable Components that were
then tested conventionally.

3.2.2.3 Application Engineering

The major benefit of the Navy/STARS Demonstration Project’s development of the integrated tooling
available in the SEE is realized in Application Engineering. The final Application Engineering pro-
cess support provided by the efforts of Domain Engineering is truly a turnkey process for producing
training systems based on systems engineering decisions. This section walks through a development
scenario for building a training system artifact (code and documentation) to illustrate how the tooling
helps in the specification and generation of end work products.

However, before tracing through the AE development scenario, it is essential to understand that many
of the SEE tools are transparent or unobtrusive to an application engineer. The SEE is based upon
aninfrastructure of commercial off-the-shelf (COTS), public domain, and Boeing/STARS-developed
tools integrated to provide the complete Application Engineering capability available to an
application engineer. This capability is built on and compliant with several standards (POSIX, Motif,
ATIS, and OMG CORBA) which increases the likelihood that the SEE can be expanded and
interoperate with other tools. Table 4 illustrates the tools that directly support the Application
Engineering development scenario described later in this section.

The STARS SEE is invoked via a menu pulled down from a standard DECWindow session manager.
Once the SEE is activated, its Process Engine guides users in performing their work. It uses work

21

3. Typical Tooling Scenarios

breakdown structures and precedence networks defined through DecPlan to control the precedence
of the activities and guide the user through performance of the activities. The Process Engine also col-
lects process metrics for later analysis and process improvement (STARS 1993). Access to the reuse
library, also a part of the process, is augmented by a knowledge-based tool, KAMEL, which uses rules
about the domain to perform selection and adaptation of system components, as will be described in
the Application Engineering development scenario under Application Modeling. Configuration
management and version control are provided automatically as each user access objects from the
repository. The SEE maintains a separate user work area so that each user will not accidentally
corrupt work being done by others. The SEE is a multiuser platform that can support users who are
geographically separated.

(deffunction make-TACANSelfTest (?spawninst ?value)
(if (eq 7TACAN_C_answer_value Yes) then
(bind ?value Copilot)
(bind ?nvalues (+ nvalues 1))

)

(if (eq ?”TACAN_P_answer_value Yes) then
(bind ?value Pilot)
(bind ?nvalues (+ 7nvalues 1))

(bind Inewsym (sym-cat ?value “TACSIfTestInit”))
(bind Tnewdesc (str-cat 2value “TACSIfTestInit”))

bind newnam (symbol-to-instance-name ?newsym
sy sy
(bind 7gnewsym (sym-cat ?newsym “Question”))
(bind ?qnewnam (symbol-to-instance-name ?qnewsymy))

(make-instance ?newnam of MULTI_DECISION
(Design_Group_ID TACANSelfTest) *
(Question_Name ?qnewsym) :

| (One_Line_Desc Inewdesc)

(InstanceInstantiatedBy ?spawninst)

| (FurtherQFunction make-buttonpress)

| (Multi_Entry nil))

(make-instance ?qnewnam of MULTIPLE_CHOICE_QUESTION
(Decision_Name 7newsym)

(Question (format nil “%s%s%n%s” “How is * value
“TACAN self test Initiated ?”))
. (One_Line_Question ?newdesc)
(Text_ChoicesPush_And_Hold Power_On Push_And_Release Other)
(Choices Push_And_Hold Power_On Push_And_Release Other)
(Lines_Selected 0)
(Decision_Help_Text (format nil “%s%n%s”
“For initiating self test there are several options. There options are ”
“based on the type of control unit under consideration.”))

Figure 8. AKAMEL MAKE Function

3. Typical Tooling Scenarios

File Actions

How is Pilot

TACAN self test Initiated ?

Push_And_Hold

D Push_And_Release

D Other

Decision Help I

Malfunctions : Yes
BackdoorInterface : No
Diagnostics/Test : No
Segment--Occulting : Environment
Segment--RadarDB/GA : None
Scoring : No

Motion Fidelity : 6 DOF

Engine Type : Turbine

Air Vehicle Class : Airplane

<k

Tacan Self Test Decision Group : Enac
PilotTACS!fTestTerm : No

Figure 9. AKAMEL Decide Screen

Table 4. SEE Infrastructure Summary

Tool Provider Tool Name Tool Description
Commercial-off- | Amadeus Measurement
the-Shelf CDD/Administrator | Repository administrator’s tool, navigators, editors
CDD/Repository Repository, version, and configuration management
DecPlan Management
DECWindows Windowing system
Interleaf Word processing
VMS Operating system
Public Domain CLIPS Inference engine used within KAMEL
Boeing/STARS KAMEL AE question/answer management

Process Engine

Process enactment capability providing the integration of an
object-oriented repository, a process definition language, a
graphical user interface, and a metrics collection capability

ROAMS

Reuse library mechanism for viewing, accessing, and
adapting components within the AE repository

3. Typical Tooling Scenarios

Project and Activity Management. Users (i.€., application engineers) operate within the SEE through
SEE-enacted activities. The activities are encoded by domain engineers using the process program-
ming language Agents, Artifacts, and Activities (AAA) that is implemented by the Denali persistent
programming language (STARS 1994b). This implementation of AAA has been named AAA+. The
code that defines the behavior of the activity is executed on every invocation of the activity. Typical
operations include variable initialization, context initialization such as opening a context, and opening
a persistent process. Control points trigger off the runtime state of the activity and are utilized to con-
trol the interaction between user and the activity. Figures 10 and 11 show how AAA is used to create
a user dialog box for retrieving information from the application engineer.

PROCEDURE edit_charge_line IS

-- Begin local variable declaration

wp_ld: STARS_PM_WORK_PACKAGE;
handle : db_scan;
Charge Line:db_string;
-- End of local variable declaration
BEGIN -- edit_charge_line
- Query user for Chargeline
Charge_Line := call_stars_Modal Prompt_Dialog(
the_title => “Charge-Line Query”,
the_default_text => “-.”,
the_msg => “Please input the Charge-Line to be used”
& “for the ” & my_wp.STARS PM_WPPROJECTNAME
& “!"
)

END edit_charge line;

Figure 10. AAA (Denali) Process Enactment Code

= Charge-Line Query

Please input the Charge-Line to be used for the T34C_FIT PROJECT!

OK Cancel

Figure 11. Resulting Charge Line Query Dialog Window

The SEE understands the identification or role of a particular user and presents a list of activities that
the user should perform. This individual activity management, enacted by the Process Engine, consists

24

3. Typical Tooling Scenarios

of activities that contain entry preconditions and required postconditions. The user is not allowed to
perform certain activities until that activity’s required preconditions are satisfied. Likewise, the user
is not allow to indicate an activity is completed until all of the activity’s required postconditions are
satisfied. Within activities, the user must perform certain actions, known as Required Actions, to com-
plete the activity. Optional Actions are also available to the application engineer, which provide such
capabilities as reviewing domain work products (e.g., requirements, architectures), schedules, and re-
pository contents. These Optional Actions are available so that the user can become familiar with the
domain or project prior to performing mandatory steps of the activity.

The SEE activity management also contains the notion of “projects.” Projects, to complete a
particular flight trainer system, are initiated by a project manager who in turn initiates project
activities for other engineers on the project. Work breakdown structures and precedence networks,
provided through DecPlan, are used to control the activities of the project and guide the user through
their particular activities.

Activity-related instructions assist the user in performing a given activity. These instructions provide
information such as:

* What prerequisites are necessary for the activity

e What actions are required for a given activity

* What actions are optional for a given activity

* What experience level is necessary to complete the activity

This information is presented to the user through Element Editors and Navigators, provided as part
of Digital’s CDD/Administrator. The activity-related instructions and user help were based on the
structure of the RSP Guidebook (Software Productivity Consortium 1993). The guidebook was used
as a framework (i.e., outline) for the processes and descriptions, but was augmented with
domain-specific information and instructions to aid an application engineer in the AVTS domain.

As users complete given activities, measurement data is obtained from the user by a measurement tool
named Amadeus. Wall-time measurements are taken while users are performing activities, but the
user is able to override this system-measured activity time.

As users begin working on an initiated project, separate work areas are maintained by the SEE. All
work products retrieved and/or altered by the user are maintained in a user-specific workarea. All
work products retrieved from the repository by the user have their version numbers automatically
increased to maintain a distinction between the retrieved component and those in the repository.

Application Modeling. Within the SEE, Application Modeling is simply an activity to be assigned and
performed by a given application engineer. As such, the application engineer will be presented activ-
ity-specific descriptions about what is needed to perform Application Modeling. The user, through
the use of Element Editors and Navigators, can perform optional steps, such as reviewing the Domain
Architecture, Adaptable Components, or any other portion of the domain in preparation to making
the decisions required in Application Modeling.

Once the engineer decides to begin Application Modeling, the underlying tool, KAMEL, performs'
the interfacing with the user for the decision-making process. KAMEL presents the user with

3. Typical Tooling Scenarios

questions (using an interface with mouse-driven, point-and-click interaction) and discrete answers to
select using the mouse or areas for typing in textual responses. Each decision, as itis made, is displayed
in a separate pane of the Application Modeling window so that the user can see, review, and even alter
previous answers that have been made during this Application Modeling session. The order of the
questions is determined by the Inference Engine, and decisions made about one question may
determine whether another question is asked.

Once the application engineer has answered all the questions, the responses can be checked/assessed
for consistency and completeness. It is only upon a successful check that system work products can be
produced based on these responses. This prevents the attempted generation of a system from an
incorrect or incomplete Application Model.

Application Production. Once the Application Modelis successfully checked by the SEE, the user can
initiate the generation of work products based on the Application Model. The generation is performed
by a cooperation of the Process Engine and ROAMS. The Process Engine, including the process
enactment of Denali, responds to the generation command by supplying retrieval and adaptation
directives that need to be performed. The typical adaptations that can be performed by the adaptation
directives include parameter substitution, text selection (i.e., word and paragraph), instantiation, and
other preprocessing. Figure 12 illustrates some retrieval and adaptation directives generated for
building a portion of a System/Segment Specification for the T34C FIT.

begin
ADAPT $Aircraft_Type$ “T-34”
COPY STARS_RQT_FUNCTIONAL_CAPABILITY INS_BY NAV_COMM
nc_INS_BY NAV_COMM
end

begin
ADAPT $AHRS FOR_CREW_POSS$ “Pilot”
COPY STARS_RQT FUNCTIONAL_CAPABILITY AHRS_FOR_CREW_POS
ncl_AHRS FOR_CREW_POS
end :

begin
SETPROP MCS_processingName “EXERCISE_DG_AHRS_FOR_Pilot”
ADAPT $decision_group_name “EXERCISE_DG_AHRS_FOR_Pilot”
ADAPT DG_Value_Parent “NAVCOMM”
ADAPT $DG_Definition$ “AHRS_FOR_Pilot”
COPY STARS_PM_ACTIVITY_PROGRAM EXERCISE DECISION_GROUP
AP_AHRS FOR_Pilot
end

Figure 12. KAMEL-Generated Retrieve/Adapt Directives (Excerpt)

The process enactment code drives whether the retrieval and adaptation directives are automatically
performed by the Process Engine or assigned to other user’s activities (i.e., as Required Actions).
Whether assigned to another engineer or performed automatically after the decision-making activity

26

3. Typical Tooling Scenarios

is completed, the SEE performs the ROAMS retrievals and adaptations with little work on the part
of the application engineer.

Aside from being able to adapt and generate simple text files (e.g., code), the SEE has been able to
interact with and produce adapted Interleaf documentation based on the decisions made by the ap-
plication engineers. The adaptations were made to ASCII versions of the Interleaf documents, and
then collated by Interleaf when the files were opened after adaptation. Figures 13 and 14 illustrate

<“Section.5”">
NAVIGATION_COMMUNICATION

<“para:1”>
Navigation_Communication: The simulation of the navigation, communication, and identification systems for
the application aircraft.

<“Section.6”>
NC1_AHRS FOR_CREW_POS

<“para:1”>
The Navigation/Communication segment shall provide the functionality that simulates the AHRS for the Pilot.

<“Section.6”>
NC_IFF_BY_NAV_COMM

<“para:1”> v
The Identification Friend or Foe (IFF) function shall model the operation and functionality of the IFF system
installed on the T-34.

Figure 13. Interleaf ASCII Generated From Retrieve/Adapt Directives (Excerpt)

3.2.1.1.1.2 NAVIGATION_COMMUNICATION

Navigation_Communication: The simulation of the navigation, communication, and identification systems for
the application aircraft.

3.2.1.1.1.2.4 NCi_AHRS_FOR_CREW_POS
The Navigation/Communication segment shall provide the functionality that simulates the AHRS for the Pilot.
3.2.1.1.1.2.5 NC_IFF_BY_NAV_COMM

The Identification Friend or Foe (IFF) function shall model the operation and functionality of the IFF system
installed on the T-34.

Figure 14. Final Generated Interleaf System/Segment Specification (Excerpt)

27

3. Typical Tooling Scenarios

the intermediate ASCII Interleaf adapted text and the final Interleaf document, respectively,
generated from the directives shownin Figure 12. The actions of this scenario were simple menuselec-
tions (i.e., Required Actions) where the Process Engine performed the actual work of the activity.

3.2.3 OPPORTUNITIES FOR IMPROVEMENT

The Navy/STARS Demonstration Project’s SEE is an integrated set of COTS, public-domain, and
custom-developed tooling that provides a complete turnkey capability for application engineers to
construct training systems. The SEE allows application engineers to rapidly specify and generate
systems in their domain with project/activity management, measurement, and configuration
management being performed seamlessly. The SEE’s capability was the result of a major investment
in technology support for a product-line development approach to reuse and system building.

Even with all of the SEE’s capabilities, additional opportunities exist for automated support. An
additional opportunity, which builds on the capabilities already established by the Navy/STARS
Demonstration Project’s efforts, is to improve support for Domain Engineering. Currently, this
support in the SEE is minimal. However, this is due to change within the currently scheduled iterations
of domain (and SEE) development. The SEE will begin to help the domain engineer in constructing
their work products. At first, this will likely take the form of traceability assistance among Domain
Engineering work products to allow for better impact and change analysis. It is desired, however, to
improve this assistance to provide a more interactive work-product-building capability where the SEE
is prompting the domain engineer for information to help construct the work products for the domain.

3.3 CASE STUDIES ANALYSIS

This section discusses the rationale for the different method and tooling choices that the Rockwell and
Boeing/STARS pilot projects have made. Insights resulting from this analysis led to the ideas on tool
usage provided in Section 4.

The case studies demonstrate two different scenarios in method and tool selection. Rockwell selected
a relatively low investment in employing commercial tools to create a modest, customized environ-
ment, whereas Boeing/STARS engaged in a relatively large effort to develop a environment. In each
case, these choices were determined by characteristics of the prevailing situation. The key factors
were:

¢ Organizational objectives

Available investment capital

s Existing tool base

3.3.1 METHODS

Rockwell discovered that practicing a Synthesis approach highlighted the value of institutionalizing
standardized requirements and design methods. Moreover, having the entire organization adopt stan-
dard methods provided immediate value and served as a step in transitioning to Synthesis. Further-
more, the adoption of standard methods opened the potential for cost-effectively employing
additional tools.

28

3. Typical Tooling Scenarios

In contrast, the domain targeted by the Navy/STARS demonstration has no existing, industry-wide
standard methods. Even given the obvious advantages to adopting standard methods, having
NAWCTSD impose such a standard on its contractors raises a variety of concerns which may be diffi-
cult to address, at least in the near term (although the “imposition” of DARTS as the standard archi-
tecture within this domain will demand that some of these concerns be addressed). For Boeing tohave
built in a bias toward specific methods in its first version of the SEE would undoubtedly increase resis-
tance to its acceptance. As it stands, the demonstration will be able to show the benefit of a Synthesis
approach used with traditional, ad hoc methods.

3.3.2 TooLs

Rockwell’s primary objective was initially to validate Synthesis as a viable and effective approach to
software development in a domain representative of their business area. As the pilot team’s experi-
ence and confidence in Synthesis grew, their goals shifted somewhat to increasing emphasis on selling
the Synthesis approach to the other members of their division and transitioning the technology to pro-
duction projects in broader domains. However, the investment level for the project, while not insignifi-
cant, was still modest, being provided wholly by internal research and development (IR&D) funds;
greater funding would not be available until the approach was sufficiently institutionalized across pro-
duction projects to be generating a self-sustaining cash flow. Thus, they needed to present the results
of their efforts as an Application Engineering environment with an attractive, easy-to-understand, in-
teractive interface (this was a crucial factor in making a positive first impression on the other members
of their organization and establishing a compelling case for the value of Synthesis). The only way to
achieve this on a modest budget was to utilize the organization’s available base of commercial tools
and processors. Using tools that were a de facto standard for the organization, or at least familiar to
the other staff members (although these tools were sometimes employed in unfamiliar ways), was
more attractive and credible than a completely unfamiliar or internally built prototype tool would
have been.

The Boeing/STARS program, on the other hand, had a major goal to produce a process-driven SEE.
This was seen as a technology necessary to support a product-line approach to software development
and achieve its wide spread adoption. The SEE is ultimately intended to support a variety of programs
working with diverse contractors in many different domains. Thus, there was no specific tool standard
or de facto infrastructure which constrained the SEE, except the general desire for the SEE to eventu-
allybe supported by a commercial vendor. This more ambitious objective was pursued with acommen-
surately larger budget. The budget was invested in building a custom layer of functionality on top of
a commercial product base.

29

3. Typical Tooling Scenarios

This page intentionally left blank.

30

4. ENHANCED TOOL SUPPORT

This section describes how, based on pilot project and other experience, commercially available tools
can be applied to increase the automated support provided for activities of a leveraged Synthesis pro-
cess. The tools identified are not specifically recommended or evaluated, either among themselves
or relative to other commercially available tools that are not listed. Furthermore, the accuracy and
completeness of individual tool descriptions have not been validated with their vendors and should
not be considered authoritative. Appendix F provides limited additional vendor and platform in-
formation on each of the tools listed in this section. An organization should select tools based on their
needs and the suitability of available tools to those needs, both in support of leveraged Synthesis and
for other uses.

4.1 A TYPICAL TOOL BASE

For context, consider the types of tools that are commonly found in software development
organizations. Most organizations have acquired tools to support the following needs or capabilities:

* Software work products (including project plans, requirements, design, code, testing and
installation materials, and user documentation) stored in computer files

* Reusable assets (fragments of potential work products of future projects) stored as computer
files in a hierarchical directory structure

* Document processing/publication (such as Microsoft Word, WordPerfect, Interleaf,
FrameMaker) '

* Project management (such as DECPlan, MacProject, Microsoft Project for planning)

. Programming' (editors, compilers, linkers, builders, such as vi, cc, 1d, make in UNIX
environments) '

Particular organizations may also have additional types of tools such as:

* CASE tools and frameworks (such as teamwork, Software Through Pictures, SoftBench,
ObjectMaker, OMTool, Objectory, PowerBuilder, Information Engineering Facility,
Cohesion, SNAF, Statemate, ObjecTime, MatrixX)

¢ Database tools (such as Oracle, DB2, Microsoft Access, FileMaker Pro, Paradox)
o User interface builders (such as Galaxy, XVT, Open Interface, NextStep)

e Testing and simulation tools

31

4, Enhanced Tool Support

Because the ability to profitably use tools that are already in hand would ease the acceptance of a
leveraged Synthesis process, this survey of toolideas gave added weight to identifying how these tools
could support a leveraged Synthesis process.

4.2 TOOLS FOR DOMAIN MANAGEMENT

Domain Management is an activity for planning, directing, and controlling business-area resources
to achieve business objectives. In this respect, Domain Management is very similar to conventional
program management. Thus, many of the existing techniques and tools for project management may
also be applied to Domain Management. What differentiates Domain Management from project
management is the added complexity that comes from coordinating domain development activities
with multiple application engineering projects. This section identifies project management tools that
can be used for domain planning, process management, and configuration management in support of
the planning, directing, and controlling activities of Domain Management.

4.2.1 TooLs FOR DOMAIN PLANNING

The object of domain planning is to organize resources (time, budget, and people) to achieve
near- and long-term domain objectives. The key to successful domain planning is to effectively apply
the organization’s resources to the family of systems rather than to independently plan each system.
Existing planning tools can be used in this regard. Many planning tools have the capability to support
multi-project planning so that the plans can be managed collectively as a family. Other planning tool
capabilities include support for:

Scheduling domain activities
* Identifying dependencies between domain activities
e Allocating budget and personnel resources to domain activities
* Measuring and recording progress
* Reporting domain status
Some project planning tools that can be applied to domain planning include:
* CA-SuperProject
* DECPlan
* MacProject Pro
e Microsoft Project
¢ TimeLine

STSC (1993) provides a comprehensive survey of project management tools.

4.2.2 TooLs FOR PROCESS MANAGEMENT

The object of process management is to ensure predictable cost, schedule, and quality through the
definition, execution, and analysis of the engineering process. In the past, process management tools

32

4. Enhanced Tool Support

principally provided capabilities to track reported defects (e.g., QualTEAM). More recently, tools are
being developed to directly support the definition, execution, and analysis of a process. The
Boeing/STARS Process Engine is an example of such a tool. Typical capabilities for process
management tools include support for:

* Specifying a process model
* Notifying engineers of work to be performed and of work completed
» Invoking software tools
* Collecting metrics
¢ Enforcing product and process standards
Some process management tools include:
e Amadeus
* PROCESS WEAVER
e SynerVision
s Virtual Software Factory

STSC (1994) and Eaton (1994b) provide further information on these and other process management
tools.

4.2.3 TooLs FOR CONFIGURATION MANAGEMENT

The object of configuration management is to ensure the integrity of the set of artifacts that make up
a system or family of systems. Configuration management in a domain has the same requirements as
configuration management for a project. However, there is an additional complexity in domain
configuration management because a reusable asset may be included in multiple configurations.
Typical capabilities for configuration management tools include support for:

¢ Identifying and versioning configuration items

¢ Baselining configuration items

¢ Controlling modifications to configuration items
Examples of tools that support configuration management are:

s All Change

e CaseWare/CM

e C(ClearCase

e CMS and MMS

33

4. Enhanced Tool Support

* RCE
» CCC/Manager
* PVCS

Eaton (1994a) provides further information on these and other configuration management tools.

4.3 TOOLS FOR DOMAIN DEFINITION

Domain Definition is largely an informal, information-gathering, and direction-setting activity.
Tooling has utility for recording and interrelating the Domain Synopsis, Domain Glossary, and
Domain Assumptions. In addition, tooling can support the organized warehousing and reverse
engineering of Legacy Products.

Tools for the purpose of recording and interrelating information need to support extensive free-form
and tabular text, graphics, and linkages between related items (i.e., hypermedia links). Capabilities
supporting linkages between related items are only beginning to emerge. A tool such as Mosaic
exemplifies such a capability. A minimal capability (without linkages) is provided in word/document
processor, spreadsheet, and drawing tools (possibly in combination) such as:

e FrameMaker
* Interleaf

¢ Microsoft Word
» WordPerfect

* Microsoft Excel
e Lotus1-2-3

Legacy Products can be organized into a taxonomy and stored in a hierarchical directory structure of
a conventional file system or they can be managed with a configuration management tool or a reuse
repository tool. Repository tools provide more powerful capabilities for locating fragments that might
be of use in constructing Domain Engineering work products. Examples of repository tools are:

* Reuse Management System -
* InQuisiX

Tools for reverse engineering can assist in analyzing Legacy Products or retrieving fragmentsin a form
closer to that needed by domain engineers. Examples of such tools are:

* Refine
e Teamwork C/Rev

* Bachman/Analyst Capture

34

4. Enhanced Tool Support

4.4 TOOLS FOR DOMAIN ANALYSIS

Domain Analysis is an activity for informal or semiformal specification and design of a product family
and associated production process. Relevant tools support specifying Decision Models, Product
Requirements and design, and Process Requirements.

4.4.1 TooLs FOR DECISION MODELING

The Decision Model is essentially a database of the decisions that domain engineers are deferring to
be made by application engineers. As such, it is a special-purpose database thatrepresents the schema
for the Application Model which is essentially a database of the decisions corresponding to a particu-
lar Application Product. Any database tool can be used torepresent a Decision Model. Examples are:

 DB2

* DECRdb

¢ FileMaker Pro

e 4th Dimension

e GemStone

* Microsoft Access

e ObjectStore

¢ Ontos DB
* Oracle

¢ Paradox

s Sybase

e Versant ODBMS

4.4.2 TooLs FOR PropUCT REQUIREMENTS AND DESIGN

The selection of a tool for specifying the requirements and design for a family depends on the software
methods an organization has adopted. Commonly supported methods include instances of structured,
object-oriented, and information engineering methods. An additional concern in selecting among
these tools is whether there is any support for representing variation among a set of systems or
versions; in general, however, tools of this sort are equally weak in this respect. Some tools for this
purpose are:

s Teamwork

s Software Through Pictures

35

4. Enhanced Tool Support

RDD-100

* Information Engineering Facility
* PowerBuilder

¢ OMTool

* Objectory

¢ ObjectMaker

4.4.3 TooLs FOR PROCESS REQUIREMENTS

Tools that support specifying Process Requirements are available but in smaller numbers than other
types of tools. Most tools support either IDEF-0 or a proprietary notation for depicting a process. Such
tools include:

e RDD-100
e Design/IDEF

e BPwin

‘4.5 TOOLS FOR DOMAIN IMPLEMENTATION

Domain Implementation is an activity for implementing reusable components from which application

engineers can compose tailored systems and appropriate automated support and documentation for

the prescribed Application Engineering process.

4.5.1 TooLs FOR PrRopUCT IMPLEMENTATION

Tools that support Product Implementation are the most familiar types for software developers. These
are tools that support creating code, including user interfaces, test support, and documentation.

4.5.1.1 Documentation Tools

Document processors provide comprehensive capabilities for constructing documentation. Most
processors provide capabilities for adaptable documentation in the guise of ‘form letter’ mechanisms.
In some cases, TRF2 constructs can be layered on top of a document for more flexible adaptability.
Such tools include:

e FrameMaker
e Interleaf
s Microsoft Word

* WordPerfect

36

4. Enhanced Tool Support

4.5.1.2 Code Implementation Tools

There are many tools that support code implementation. Most provide not only the traditional
capabilities for editing, compiling, and linking but also integrate capabilities testing, documenting,

and configuration managing of implementations. Such tools include:

Microsoft Visual C++
Symantec C++

Borland C++

SunPro Workshop for C++
Cohesion

Rational Rose (C++, Ada)
Eiffel

VisualWorks (Smalltalk)
C++ SoftBench

ART

Smalltalk/V

None of these explicitly supports creating and using Adaptable Components, but all provide limited
mechanisms that can be used for that purpose (such as templates and macrosin C++, generics in Ada,
and subclassing/inheritance in any object-oriented language). Tools such as TRF2 and MetaTool], that
are specifically oriented to, metaprogramming, but lack full commercial support, can be used with
these tools if greater flexibility is needed but their use would require additional effort.

4.5.1.3 User Interface Builder Tools

In addition to tools for direct construction of code, there are tools that support visual construction of
application user interfaces (that is, the user interfaces of application systems). These include tools
such as:

Galaxy
NextStep
Openlnterface
XVT

Visual Basic

Symantec

4. Enhanced Tool Support

4.5.1.4 Testing Tools

Most of the code implementation tools include mechanisms for integrating and testing code
components. In addition, there are independent tools that support testing. Within Product
Implementation, these tools are used to create test scenarios and data, appropriate to a tool, that can
be used by projects to test generated applications. Such tools include:

¢ Logiscope
* McCabe Instrumentation Tool
¢ Playback

* Purify

4.5.2 TooLs FOR PROCESS SUPPORT DEVELOPMENT

A primary concern of Process Support Development is to create a framework of tools that application
projects can use effectively to perform a standardized Application Engineering process. Tools are
needed primarily to support representing Application Models and interactively specifying and view-
ing those models. This section does not identify other tools needed, particularly ones for evaluating
an Application Model, except in that there are a few tools which provide comprehensive Application
Engineering capabilities within particular types of domains.

4.5.2.1 Tools for Representing an Application Model

An Application Model is essentially a database of Application Engineering decisions. The Decision
Model defines the schema of that database. Numerous commercial database management systems.
(DBMS) can be used to implement an Application Model. An associated capability, for application
engineers to create an Application Model, is often bundled with a DBMS or aided by DBMS facilities
for integrating with separately available user-interface tools.

Desirable.tool-supported features specific to support of Application Modeling are:

* Representational adequacy (decision classes and all types of decisions can be represented
reasonably)

* Multiple concurrent users (a large Application Model can be created by a team of application
engineers)

* Schema evolution (modifications to a Decision Model do not invalidate existing Application
Models)

* Data versioning (multiple, alternative Application Models or parts thereof can exist
simultaneously for direct comparisons of meeting customer needs)

* - Application Modeling interface (decisions can be presented to application engineers for
resolution and subsequent modification within a reasonable interactive process)

38

4. Enhanced Tool Support

» Dependency maintenance (changes to a decision may invalidate/nullify other decisions; it
should be possible for domain engineers to program such side-effects so that they are implicit
to application engineers)

* Application Production interface (decisions drive Application Production; it should be
possible to interactively query decisions or access decisions from automated Generation
Procedures)

e Configuration management (it should be possible to associate an Application Model or
version with the corresponding generated product and any hand-modified variants)

There are three classes of systems that can be used to implement an Application Model: file-based,
relational, and object-oriented systems. File-based and relational systems are similar in that aggregate
(that is, multivalued) decisions must be represented as distinct files/relations, and representation of
nested and related decision classes requires matching on replicated, uniquely valued key fields. Ob-
ject-oriented systems explicitly support aggregate fields and direct referencing of any object (instance
of a decision class) via a unique identity, either directly or by navigation through object references.

To implement an Application Model in a file-based or relational system, each decision class is
represented as a file or relational table. Each decision is a field of a file record or of a tuple in a
relational table. Nested or related decision classes are linked by matching field values. Representable
decision values are generally limited to a predefined set of built-in data types. Examples of file-based'
and relational systems are:

e DB2

* DECRdb

¢ FileMaker Pro
¢ 4th Dimension

e Microsoft Access

* OQOracle
e Paradox
e Sybase

To implement an Application Model in an object-oriented system, each decision class is represented
as anobject class. Each decision is an attribute of objects in the class. Nested or related decision classes
are linked by object identity. Decision classes can also be specialized into subclasses to represent
conditional decisions. Representable decision values are usually extensible, from built-in data types
to user-defined types. Examples of object-oriented systems are:

* GemStone

e ObjectStore

4. Enhanced Tool Support

e Ontos DB

e Versant ODBMS

4.5.2.2 Tools for Providing a User Interface for Application Modeling

While the ability to represent an Application Model is fundamental to an Application Engineering
capability, application engineers’ view of it depends on the tool that enables entry and viewing of deci-

- sions. This tool may be an adjunct to a tool having integral data storage, or it may be independent with

aprogrammatic interface to a database tool. Tools with a bundled capability for user input of decisions
include:

* FileMaker Pro
¢ WordPerfect
¢ Word
Independent user interface tools include:
* Galaxy
* NextStep
¢ Openlnterface
* XVT
* Visual Basic

e Ontos Studio

4.5.2.3 Domain-Specific Tools for Application Engineering

Asan alternative to putting together an Application Engineering environment out of disparate tools,
there are available tools that provide relatively comprehensive capabilities. For domains that are ade-
quately supported by one of these tools, the effort of providing process support can be greatly reduced.
Other key issues for these tools are extensibility and tailorability to fit an organization’s particular
needs, the completeness and quality of producible products, and whether adequate competitive ad-
vantage is achievable if the goal is to build commercially competitive applications. Examples of such
tools include:

e Matrix-X
*» Statemate
* ObjecTime

* SNAP

40

4. Enhanced Tool Support

4.6 TOOLS FOR PROJECT SUPPORT

Beyond the tools provided by Domain Implementation, which Project Support either delivers to
application projects or uses to accomplish delivery, there is a need to capture and track problems
encountered by the projects in using those tools. Tools that can be used for problem tracking include:

s CaseWare/PT
s CCC/Pro
* ClearQuality

o] otus Notes

41

4. Enhanced Tool Support
|
|
|

This page intentionally left blank.

42

5. CONCLUSIONS

generally applicable to organizations beginning to adopt a leveraged Synthesis process:

Familiar, commonly available tools can be used effectively in support of a leveraged Synthesis
process. However, comprehensive support currently requires substantial investment in
additional automation and tool integration. :

Initial tooling efforts should focus on the needs of Application Engineering. Improving the
efficiency and effectiveness of product development is, after all, the principle motivation for
instituting a reuse-driven process. Attention to tooling for Domain Engineering comes
second, focusing on how to reduce the effort required to create and evolve a domain and
Application Engineering Process Support. '

Based on the Rockwell and Boeing pilot projects and other experience, the following insights are

The Application Engineering Activity in a leveraged Synthesis process is substantially simpler
than conventional software development. Consequently, appropriate tooling requires
relatively modest effort. However, Domain Engineering shares the obstacles to effective
automation that are typical of conventional development and introduces additional
complexity.

There are several corresponding opportunities open to vendors for improving the support that
commercial tools provide for a leveraged Synthesis process:

Add mechanisms for adaptability, like those found in document processors, Ada generics, or
C++ templates, to other tools. These mechanisms support both the creation of adaptable
work products and the processing of those into tailored instances. The need is particularly
great in tools that support the formulation of requirements and design specifications.

Extend implementation environments to support domain engineers in creating and verifying
Adaptable Components.

Create project management tools that specifically support an iterative process (i.€., a process
in which activities are nonterminating and schedules accommodate explicit cycles through
multiple instances of each activity). A milestone in aniterative process is metby the baselining
of a work product version, rather than the ‘completion’ of a work product.

Provide tailorable tools that domain engineers can specialize to have domain-specific
nomenclature, information presentations, operations, and explanation. Alternatively,
provide specialized tool components that domain engineers can combine and extend to create
a domain-specific tool.

43

5. Conclusions

This page intentionally left blank.

APPENDIX A. BOEING/STARS SEE EVALUATION

This appendix describes the conclusions of an initial exploration of the demonstration (Demo) version
of the Boeing SEE (STARS 1993). This exploration was initiated to determine the level of support
provided by the SEE for a leveraged Synthesis process (Software Productivity Consortium 1993). This
note describes the nature and limits of support that the SEE provides relative to the work products
and activities of leveraged Synthesis. Section 3 of this report provides a more comprehensive analysis
of how the process was performed, as a hybrid manual/automated task, within the SEE framework and
identifies which tools supported each of the activities of domain and Application Engineering.

Overall, the Demo SEE provides capabilities that are representative of a well-conceived Application
Engineering Environment (AEE). It supports the essential elements of an Application Engineering
process in enabling the domain-specific creation of an Application Model and the generation of work
products from reusable components guided by the Application Model. Although the Demo SEE sup-
ports construction of only limited variations of a single work product family, it does so in a Synthesis-
compatible fashion. Consistent with the project’s plans and status, support for Domain Engineering
is fragmented and at a relatively low level of detail.

The SEE’s major shortcoming, which is attributable both to the level of maturity of the SEE and to
its having originated as a domain-independent SEE, is that too many aspects of a conventional SEE
capability are evident to a user. For example, generic operations related to project and process man-
agement, specific to underlying tools, or used for accessing underlying domain information predomi-
nate over domain-specific (‘process’) operations. An advantage of a domain-specific SEE (i.e., an
AEE) is that its capabilities are tailored and streamlined to match the user’s tasking; the Demo SEE .
has only begun to achieve this vision.

The SEE’s basic mechanisms appear to be sufficient to create an AEE better tailored to support an
AE process for the NAWCTSD AVTS domain. More information would be required to adequately
judge whether shortcomings in the SEE viewed as an AEE are characteristic of the SEE’s capabilities
(and therefore difficult to change) or are only an artifact of the particular instantiation of animperfect
process model (and therefore relatively easy to change). The fact that this version of the SEE was
created for demonstration purposes rather than engineering usage accounts for some of the following
comments.

The assessment analyzed and evaluated three factors:
* Ability of the SEE to portray an AEE:

— The Demo SEE has representative capabilities of a well-conceived AEE. It is
sufficient to show the potential of the underlying mechanisms to support
domain-specific Application Engineering.

45

Appendix A. Boeing/STARS SEE Evaluation

— The Demo SEE, as configured, is a small fragment of a complete AVTS AEE,

consisting of only a single activity thread of project management, Application
Modeling, and Application Production, corresponding to a single work product (the
SSS) varying with respect to a single accessible decision group. This is an insufficient
basis to assess whether the SEE will scale up to full use.

Validity of the Application Engineering process supported by the Demo SEE:

The Demo SEE has certain activities for demonstration purposes only. The most
obvious example is the series of three steps that the user (in the role of a technical
editor) must go through to generate a work product instance (an SSS) after an:

- Application Model has been completed; in principle, only a single unified step would

be necessary. The SEE, configured as an AEE for project use at NAWCTSD, would
ideally contain a single unified product generation step. Alternatively, for flexibility
but less transparency, it might allow separate generation of individual work products
or editing of a generated work product (the latter, however, circumvents Domain
Engineering and, therefore, is discouraged as a standard procedure).

The Application Engineering process supported by the Demo SEE is excessively
serialized and noniterative. An Application Engineering process should encourage:
experimentation and refinement through iteration. There should be a sense of
ongoing, concurrent, communicating activities. Specifically, an AEE should allow
redeciding of any decisions, going across all decision groups, at any time. It is
unrealistic to expect decisions to be resolved completely or correctly in a single pass..
The consequence of modifying decisions is the regeneration of affected work products.
which are then (re)reviewed/verified and validated. Iteration continues until a.
satisfactory and complete product has been produced.

Similarly, the Application Engineering process supported by the Demo SEE does not
accommodate the explicit entry of alternative resolutions of decisions that would spec-
ify alternative solutions to a customer’s requirements. It should be possible to specify
such alternatives and compare the resulting products to determine which best address-
es the customer’s problem. Decisions often interact in complex ways in the generation
of a product, with implications that an application engineer might not foresee. Allow-
ing for the creation of only one solution at a time prevents experimentation and direct
comparison of alternatives as a means to finding a best solution.

The utility of user roles as a means to structuring and partitioning the activities of the
supported Application Engineering process is unclear from use of the Demo SEE.
Presumably, a large effort tasked to create a large, multifaceted Application Model
resulting in many work products would benefit from an AEE in which there was clear
delineation of roles. However, in using the Demo SEE, it seems to force too much de-
lineation. Also, roles and user identities should be distinct concepts to allow multiple
users to fulfill each role and each user to fulfill multiple roles.

The Application Engineering process is overwhelmed by management infrastructure
in the Demo SEE. Substantially more effort is required for project management and
time accounting than for actual product engineering. It seems unlikely from use of the

46

Appendix A. Boeing/STARS SEE Evaluation

Demo SEE that this infrastructure will be less obtrusive when managing a large
project.

» Visibility and effects of conventional SEE underpinnings:

— The Demo SEE is encumbered by a conventional software engineering orientation.
Many of the activities presented to the SEE user in window header menus and buttons
are generic and unrelated to the needs of domain-specific Application Engineering.
Most of these capabilities represent elements of the SEE infrastructure that are essen-
tial at some level, however, few of them are of any direct use in domain-specific Ap-
plication Engineering. As a result, the initial impression is one of complexity and
detail, which obscures the essential Application Engineering process. The Demo SEE
takes on the feel of an AEE only after the user descends into the process-specific capa-
bilities of the SEE. Elimination of nonessential generic activities would make the
Demo SEE both simpler and more effective as an AEE.

— Underlying mechanisms are sometimes overly visible to the application engineer. For
example, activity and field identifiers are sometimes generic or in process engineering
terms (e.g., create/modify “elements’) when domain-specific terminology within the
particular context would be more effective. Similarly, window-specific help is often
simply a description of the underlying tool when the real issue is the role of the refer-
enced activity in the Application Engineering process. Direct use of generic tools, such
as DECPlan in the project management activity, is obtrusive in a domain-specific
AEE. Instead, a project plan should be abstracted for the domain and parameterized
with decisions, just like other work products; project planning should then consist of
making project-specific decisions from which a detailed plan is generated.

— At the top level, the Demo SEE provides access to underlying domain artifacts.
Although accessing those artifacts is often useful to gain deeper understanding of a
domain, it is not generally part of product development proper to do this. These
information-only actions should be pushed into the lower levels of the Application
Engineering process, as help or review aids.

Some additional, minor observations were:

* The process for exercising the NAVCOMM decision gfoup includes a ‘practice decide’ and a
‘formal decide.” Such a distinction seems artificial because refinement of decisions will
generally require repeated iteration within and among decision groups anyway.

e Access to underlying requirements and design from each decision group is not a general
capability. It is not typical for requirements and design to partition neatly along the lines of
the decision groups.

¢ One of the generic operations is to view the ‘Application Model’ domain asset. This actually
presents the domain’s Decision Model, suggesting some confusion in the use of these terms.

47

Appendix A. Boeing/STARS SEE Evaluation
|
|
|
|
|
\
|

This page intentionally left blank.

48

APPENDIX B. USING FILEMAKER PRO TO
REPRESENT DECISION AND APPLICATION
MODELS

Claris Corporation’s FileMaker Pro database product is an inexpensive, easy to use tool that runs on
IBM PC-compatible and Macintosh computers. As such, it is readily available to the majority of Syn-
thesis practitioners. Therefore, it is a candidate tool for a project wishing to use automated tools dur-
ing Synthesis but forced by budget or other concerns to reject more specialized, expensive CASE tools.

This appendix discusses how domain engineers and application engineers can use FileMaker Pro
during Synthesis activities. The focus is on creating and using the decision and Application Models.
The discussion is based on comparison with other equally inexpensive tools. Two baselines are used
for the comparison. The first is no automation: a project where the decision and Application Models
would be captured on paper. The second is a networked computer environment with only rudimentary
tools that can capture information but cannot structure it. A text editor would be an example of such
a tool.

Table 5 summarizes Synthesis activities in which FileMaker Pro is useful and the ways in which it may
be used.

Table 5. Summary of How FileMaker Pro Supports Synthesis

Synthesis Activity Uses for FileMaker Pro

Decision Model Domain engineers may use FileMaker Pro to represent the Decision }
Model. Using it can help ensure its consistency and completeness, and—in
group settings—can guard against people entering redundant decisions.

Product Requirements Domain engineers may use FileMaker Pro as a mechanism to answer
queries about the content of the Decision Model and to specify the user
interface for Application Engineering tools.

Process Support Development |Domain engineers may use FileMaker Pro to automate portions of
Application Modeling.

Application Engineering Application engineers may use FileMaker Pro to help them create and
maintain Application Models.

B.1 OPERATIONS PROVIDED BY FILEMAKER PRO

To facilitate comparing FileMaker Pro to the two baselines, it is necessary to discuss the capabilities
FileMaker Pro offers.

FileMaker Pro is a simple database tool. Its user need not be a proficient programmer; its paradigm
requires neither algorithm development nor language mastery. It provides a simple, file-based data

49

Appendix B. Using FileMaker Pro to Represent Decision and Application Models

model. A database is a set of files, each of which consists of a set of records. Each record consists of
a set of typed fields.

In essence, FileMaker Pro provides the following operations:

Centralized Data Access (Storage and Retrieval). In a networked computer environment,
FileMaker Pro files can provide a common location for data. (Any tool that lets users enter
and retrieve data provides this capability, which is really a feature of the network. However,
it is an important, fundamental advantage over paper-and-pencil representations.)

Access Control. A file’s creator may assign certain rights to it. Examples of such rights include
control over who may read the file, modify the file, or modify the file’s structure. (This is

. somewhat more powerful than the access facilities a network might provide. A network might

control read or write access, but it has no control over the structure of a file. Thus, FileMaker
Pro offers some advantages over a text editor or other tool for representing unstructured
information.)

User-Interface Creation. FileMaker Pro provides a set of icons and drawing facilities consistent:
with its field-oriented paradigm. Fields may be arranged in any location and may be decorated:
with graphics.

Queries. FileMaker Pro provides a browsing and query mechanism based on a set of built-iny
operations. (However, its query facilities are limited compared to the typical database
management system. In particular, there is no join operation.)

Operation Invocation. Users may invoke FileMaker Pro’s built-in operations, either directly
(via menus or keys) or indirectly (via buttons provided by a file’s creator). Also, one built-in
operation invokes other programs. This lets FileMaker Pro users interact with their environ-
ment and, in effect, means that any operation is possible on data entered through FileMaker
Pro.

Structured Data Collection and Storage. FileMaker Pro lets a user enter data in a file according
to the file’s predetermined structure. FileMaker Pro automatically stores data that a user
enters.

B.2 USING FILEMAKER PRO DURING THE DECISION MODEL ACTIVITY

The following list describes the FileMaker Pro operations that are useful during the Decision Model
Activity:

Centralized Data Access. When a group of domain engineers uses FileMaker Pro during
Decision Modeling, everyone allowed to read the files representing the Decision Model has
immediate access to the latest version of the Decision Model.

Access Control. The domain engineers will probably want to assign subgroups with
responsibilities for different portions of the Decision Model. FileMaker Pro can assign the
ability to modify a file to a subgroup. By partitioning decision groups across files, the group
capability can ensure that only those people within a group can create or modify files.

50

Appendix B. Using FileMaker Pro to Represent Decision and Application Models

* Queries. Domain engineers can use FileMaker Pro to determine the state of the Decision
Model: what decisions have been created, their type, and so on.

B.3 USING FILEMAKER PRO DURING THE PROCESS REQUIREMENTS ACTIVITY

The following list describes the FileMaker Pro operations that are useful during the Process
Requirements Activity:

* Centralized Data Access. The files created during the Decision Model Activity give domain
engineers a standard place to look when they have questions regarding the Decision Model.

® Access Control. Domain engineers can be prevented from accidentally modifying the Decision
Model.

* Queries. Domain engineers may use FileMaker Pro to answer specific questions about the
Decision Model, such as the range of permissible answers for a decision specification or the
set of decisions that make up a decision group.

* User-Interface Creation. If domain engineers determine that application engineers should see
the Application Model as a set of forms, FileMaker Pro provides a means to describe the
format and content of those forms pictorially.

B.4 USING FILEMAKER PRO DURING THE PROCESS SUPPORT DEVELOPMENT
ACTIVITY

The following list describes the FileMaker Pro operations that are useful during the Process Support
Development Activity:

* Centralized Data Access. The files created during the Decision Model Activity give domain
engineers a standard place to look when they have questions regarding the Decision Model.

* Access Control. Domain engineers can be prevented from accidentally modifying the Decision
Model.

* Queries. Domain engineers may use FileMaker Pro to answer specific questions about the
Decision Model.

* User-Interface Creation. If application engineers enter the Application Model as aset of forms,
domain engineers may use FileMaker Pro to specify those forms.

* Operation Invocation. If domain engineers decide to use FileMaker Pro as the front end for the
Application Engineering environment, they can create an interface that will allow the
application engineer to invoke validation and generation tools.

B.5 USING FILEMAKER PRO DURING THE APPLICATION ENGINEERING
ACTIVITY

The following list describes the FileMaker Pro operations that are useful during the Application
Engineering Activity:

51

~* Data Collection and Storage. Application engineers can enter decision specifications as
FileMaker Pro field values.

* Queries. Application engineers can examine existing Application Models.

. & Operation Invocation. Application engineers can use FileMaker Pro to invoke other tools that

Appendix B. Using FileMaker Pro to Represent Decision and Application Models
| validate, or generate systems from, Application Models.

|
|
|
|
52

APPENDIX C. CREATING ADAPTABLE
DOCUMENTATION

This appendix discusses how domain engineers can use a document processor to create adaptable
documentation that can be instantiated into tailored documentation by application engineers. The
capabilitics of Interleaf 5 (Sun), Microsoft Word 5.1 (Macintosh) and 2.0 (Windows), WordPerfect
3.0 (Macintosh), and FrameMaker (Macintosh) are described. It is feasible to use the mechanisms
inany of these products to create adaptable documentation. In addition, if a tool can store and retrieve
documents in ASCII format, domain engineers can layer adaptability onto a document using the
Consortium’s TRF2 metaprogramming notation (Software Productivity Consortium 1991).

Sections C.1 through C.4 describe the mechanisms for adaptability supplied by each of these
document processors and by TRF2. The motivation for these mechanisms is the need to create a set
of documents that are similar and yet tailored to the needs of particular audiences. A simple example
of this is form letters.

C.1 INTERLEAF MECHANISMS

Interleaf has two related mechanisms, effectivity control and attributes, specifically designed to
support adaptable documents. In Interleaf, attributes are used to characterize the dimensions of
variation for a document and effectivity control is used to manage how those attributes determine
document tailoring. Each attribute has a user-defined (string or enumerated) value which can either
be substituted as document content or be referenced within control expressions to control the
inclusion and exclusion of particular document elements (components, inline components, frames,
named graphics objects, and tables — substitution is table-wide but rows and columns and individual
cell values can be selectively included or excluded). In addition, effectivity control can be applied to
linked external documents to define adaptable compound documents.

C.2 MICROSOFT WORD MECHANISM

Microsoft Word provides a “print merge” mechanism that can be used to create adaptable documents
and tailored instances. This mechanism, conceived to support tailoring as for simple form letters, in-
cludes a macro capability for creating a pattern document consisting of text placeholders, conditional
text, and inclusion of other files, in addition to normal document content. Document tailoring entails
substituting associated stored (data-document) or user-input decisions into the placeholders and
conditionals of a pattern document and macro-evaluating the result to create a tailored document.

C.3 WORDPERFECT MECHANISMS

WordPerfect provides macro and document merge mechanisms that can be used to create adaptable
documents. It has extensive macro operations that enable the creation of text placeholders,

53

Appendix C. Creating Adaptable Documentation

conditional and iterated text, and inclusion of other files. Document tailoring occurs via the document
merge mechanism, substituting user-input decisions into placeholders, conditionals, and repeating
text, and macro-evaluating the result to create a tailored document.

C.4 FRAMEMAKER MECHANISM

FrameMaker provides two mechanisms, conditional text and variables, which support adaptable
documents. Conditional text is a text selection that has been associated with (one or more)
user-defined named tags that a user can flag as ‘in’ or ‘out’ of a document version. Tables, rows, cells,
and text-anchored frames can also be associated with these tags. Tags have associated format override
options with which users can control the appearance (from a selection of style and color choices) of
tagged text. Variables are symbols that have associated text which is substituted into all occurrences
of the variable within document text. Text associated with a variable can include intermixed format
control selectable from the choices in the document’s character format catalog.

C.5 LAYERING ADAPTABILITY ONTO AN INTERLEAF DOCUMENT WITH TRF2

TRF2 is a notation for describing the adaptability of a work product and an associated tool for
generating tailored instances of the work product. Within an Interleaf document, users can embed
TREF2 constructs, both at the component level and inline, to define how deferred decisions determine

wvariations in document content. TRF2 constructs support text substitution, conditional text, repeating

text (containing nested substitutions, conditionals, and repetitions), included subdocuments (from
other files), and definition of parameterized ‘subdocuments’ that can be expanded as tailored
instances wherever needed in the containing or including documents. Each of the user-input decisions
to a TRF2-instrumented document can be specified to be simple text (retaining any associated
formatting properties), a symbol, a structured set of subdecisions, or a repeating set of subdecisions;
each can be designated as required or optional (left undefined).

By using a specially defined Interleaf “trf2” component, a user can distinguish instances of these
constructs from other, normal components and color-code them to stand out visually from normal
document content. After an adaptable document has been created along with a specification of
appropriate instantiation decisions (and saved in Interleaf ASCII format to enable filtering and
text-based processing by TRF2), the TRF2 tool is applied to instantiate the document, creating a
tailored version of the document that can be viewed and printed with Interleaf. This technique can
also be applied to FrameMaker documents (after being saved in file interchange [MIF] format for
TRF2 processing).

C.6 COMPARISON OF APPROACHES
Common features of all five approaches to adaptable documentation are:

* Anyrange of text, complete tables, and complete graphical frames can be selectively included
or excluded in tailored versions of a document.

* Text-valued variables can be used in place of literal text any place that text is allowed within
a document; generating a tailored instance of the document substitutes the variable’s value
for each reference to it.

54

Appendix C. Creating Adaptable Documentation

The advantage of using any of the document processors (without TRF2) is that both creation of a
document and its tailoring into instances occurs entirely within, and using the mechanisms of, the
document processor.

Advantages of using Interleaf are:

Individual graphical components can be selectively included or excluded in tailored versions
of a document (given that they are named).

Effectivity control can be used to tailor the content of linked documents, as a form of nested
instantiation with attributes as parameters.

An advantage of using FrameMaker is that text formatting control can be included in the definition
of a variable’s value. TRF2 also supports this but lacks the ability to default formatting to that of the
referencing context. Other packages support only the formatting defined by the referencing context.

The advantages of using TRF2 with Interleaf or FrameMaker are:

The parameters of variation, analogous to attributes in Interleaf and variables in
FrameMaker, are specifically defined and visible within the adaptable document. Attribute
definitions are hidden within the document property sheet, variable definitions in a variables.
display form.

The tailoring, inclusion or exclusion, and replication of text is explicit based on the parameters.
of variation, making their implications visible. Interleaf effectivity control is hidden with the:
document and component property sheets. Inclusion/exclusion in FrameMaker is limited to:
a simple user toggle, also hidden in a conditional text display form.

Replication of components or fragments, with selective tailoring based on multivalued
parameters, is supported.

Interleaf supports color-coding by component type. By representing TRF2 constructs
exclusively within a distinct component type, they can be color-coded to stand out from normak
document content. FrameMaker provides similar support, but only for conditional text.

TRF2 parameter values apply to a document as a whole, as do FrameMaker variables.
Attribute values in Interleaf are associated with a page rather than with a component, a
component type, or a document as a whole. This means that an attribute whose value applies
to a full document must be assigned its value in at least one component on every page. When
multiple components on a single page are assigned different values, it is not clear which takes
precedence. Although an entire document can have a value associated with an attribute, its
use is limited to deciding the inclusion or exclusion of the entire document in a book. Global
assignments work only across an entire book (or document, if not resident within a book) but
works only if every page contains at least one of the component types assigned the global value.

55

Appendix C. Creating Adaptable Documentation

This page intentionally left blank.

56

APPENDIX D. AN INFORMATION MODEL FOR
LEVERAGED SYNTHESIS

The work products of a leveraged Synthesis process can take many forms. However, the essential
information represented is the same, regardless of the specific form in which it is presented. This
appendix formalizes the top-level information model that underlies the work products of a leveraged
Synthesis process. The purpose of this model is to provide both a more generalized understanding of
the information content of a Synthesis process and a basis from which tool vendors can create
consistent and conforming tools. The version of the model presented here is influenced by the original
Synthesis Reference Model (Software Productivity Consortium 1990a), the RSP Guidebook
(Software Productivity Consortium 1993), and the Boeing/STARS logical model (Boeing 1994) that
was created as the basis for a Domain Engineering automated environment which is currently under
development as an extension of the SEE.

The following conventions are assumed:

¢ The purpose of the process is to produce the information identified by this modek
corresponding to particular business objectives and domain knowledge.

» Information versioning is outside this model. A valid instance of the model may contain
multiple versions of any information, resulting from the repeated iteration of all or part of the
process.

* Thenecessity of any information is defined by the process, not by this model. Any information
may be known or unknown within a valid instance of the model, but the process may require
that certain information be known for an instance of the model to be considered ‘complete.”

The following notations are used:

a named a many-to-many
<name> 4 >__<
concept relationship
a conne.!ctf)r to a many-to-one
a specialized > relationship .
concept
a one to one é a one-to-many
relationship relationship

Relationships are labeled by verbs that denote meaning, with names placed nearest to the subject
concept. Concepts are sometimes grouped within a box for notational convenience; for example, a

57

Appendix D. An Information Model for Leveraged Synthesis

relationship shown from a concept to a boxindicates that the relationship exists to each concept within
the box.

D.1 DOMAIN ENGINEERING PROCESS

DE process
| produces
product implements . represents
family domain
repr'esents contains
contains
AE process AN
subdomain
produces
AN\
< product
AN
work product contains
family
represents VAN
] work legacy
N product product

product

line

consists of

58

Appendix D. An Information Model for Leveraged Synthesis

D.2 APPLICATION ENGINEERING PROCESS

AE process
customer
requirements| 5. qyces consists of
4
delineate N .
consists of
< product activity N
contains
produces
AN A\ consumes VAN
plv':y)(:;;l:ct feedback
project Application Application delivery

plan Model Product support

59

Appendix D. An Information Model for Leveraged Synthesis

D.3 DOMAIN
business | motivate . formalizes domain
objectives domain knowledge
|
consists of
I

domain Domain Domain Domain

plan Definition Specification Implementation|
consists of consists of
Decision
Model
product family
requirements product family
defines
PYOd}ICt ! implementation
family product family
design
defines rocess rocess
AE process P P
requirements support

60

Appendix D. An Information Model for Leveraged Synthesis

D.4 DOMAIN PLAN

domain
plan
I

consists of

AN
domain practices and demain
master plan procedures increment plan
risk .)
analysis objectives schedule issues

61

Appendix D. An Information Model for Leveraged Synthesis

D.5 DOMAIN DEFINITION

Domain

Definition

1
consists of
]

AN /N
Domain Domain Domain domain legacy
Synopsis Glossary Assumption status product
references consists of
N\
/ term commonality
N]| definition assumption
\elaborates
. |V
< reference variability
assumption
NZN%
exclusionary
references assumption
Y references

62

Appendix D. An Information Model for Leveraged Synthesis

D.6 DECISION MODEL

Decision | specifies Application
Model Model

consists of

AN\

decision
group
consists of

defineS/

AN\

restricts ..
A decision

constraint

AN

decision V4

V.

elaborates

N
aggregate variability
decision assumption

defines

decision
specification

63

Appendix D. An Information Model for Leveraged Synthesis

| D.7 PRODUCT FAMILY REQUIREMENTS

product family| specifies product
requirements family

)
consists of

concept context content constraints
\/elaborates \/references
VAN /N
domain .
] decision
assumption

64

Appendix D. An Information Model for Leveraged Synthesis

D.8 PRODUCT FAMILY DESIGN

product family
design

consists of

A

product £l component generation
architecture N gesign design
consists of consists of consists of
‘ AN
| work product adaptation componefit
architecture specification mapping
consists of
AN int.(;urfa:.e architecture
c .
design specification mapping
structure
decision
mapping
work product Y references
structure | jdentifies
\/elaborates /N
AN decision
domain |
assumption

65

Appendix D. An Information Model for Leveraged Synthesis

D.9 PRODUCT FAMILY IMPLEMENTATION

product family

implementation

consists of

N, instantiates

AN\
implements /| Adaptable
Component
component
design

AN
generation [Nmplements
procedure
generation
design

66

Appendix D. An Information Model for Leveraged Synthesis

D.10 PROCESS REQUIREMENTS

pl:ocess specifies AE process
requirements
T
consists of
]
process AMN
specification specification
consists of
AN
term N /| AMN N AMN
definition 1/ o . .es Presentation " organizes| structure
N%Z presents
decision

group

67

Appendix D. An Information Model for Leveraged Synthesis

D.11 PROCESS SUPPORT

process
support

I
consists of
1

AE Process elaborates | AE User’s elaborates | AE Training
Standard Guide Courses
implements implements
implements
AEE documents | AEE Support
Manual
integrates
process AMN product family
specification specification implementation

68

APPENDIX E. REUSE LIBRARY TOOLS

Engineers and managers frequently associate reuse library tools with reuse practice. Reuse library
tools provide mechanisms for the description, classification, storage, and retrieval of components
(Software Productivity Consortium 1990b). Automated reuse library tools have a significant role in
processes where application engineers opportunistically search for potentially reusable assets from
a large collection then retrieve candidate assets for further analysis and adaptation. However, in a
Synthesis process, opportunistic searching is replaced by mechanical identification and adaptation of
assets based on engineering decisions; thus, the traditional reuse library tools have a more limited role
in the process. Nevertheless, as demonstrated in the Boeing/STARS use of ROAMS (Section 3),reuse
library tools can be used in a Synthesis process.

This appendix identifies existing reuse library tools, describes typical capabilities provided by these:
tools, and characterizes how reuse library tools can be used in a Synthesis process.

E.1 REUSE LIBRARY TOOLS

In the late 1980s, the reuse community viewed reuse libraries as the principal means to achieving
higher levels of reuse. This view fostered the research, development, and ultimately the
commercialization of many reuse library tools, such as the Consortium’s Reuse Library Prototype:
(Software Productivity Consortium 1990b) that was adapted and commercialized by Atherton:
Technology. Later, the reuse community recognized that there were many other factors critical to-
successful reuse, such as process and organization, in which reuse libraries have a relatively small role
(Software Productivity Consortium 1993).

Earlyin the STARS program, like the rest of the reuse community, the three STARS prime contractors
placed much emphasis on software engineering environments in general and reuse library tools. in
particular. The STARS’ effort resulted in the following reuse library tools:

¢ ROAMS, Boeing
* Reuse Library Framework, Unisys
* Asset Management System, Loral/SAIC

The STARS project also integrated their reuse library tools with their SEEs and are now placing more
emphasis on integrating their engineering environments with their megaprogramming concept:
process-driven, domain-specific, reuse-based, and technology-supported software engineering.

In line with the early thinking based on opportunistic searching of reuse libraries, several commercial
products have come to market, including:

69

Appendix E. Reuse Library Tools

¢ InQuisiX, Software Productivity Solutions

* Reuse SoftBoard/Reuse Management System, Atherton Technology
* Reuse Library Toolset, EVB Software Engineering

* Reusable Search Expert, Westinghouse

CASE tool developers are also beginning to incorporate reuse library capabilities into their software
development environments. Their current focus is on providing a common object repository to enable
sharing of data among the various development tools. Although the focus of many of these tools is still
on the development of a single system, they have the potential of being used to support multiple, if
not family, systems development. An example is Logicore, which provides a common object
repository for Logicon’s I-CASE environment for the DoD (Bragg 1994).

Recently, due to the growing popularity of the World Wide Web, many organizations are using
Internet discovery tools, such as Mosaic, WAIS, Gopher, and Archie, as a basis for implementing
reuse libraries. The Repository Based Software Engineering program sponsored by NASA has
implemented a reuse library tool based on Mosaic known as the Multimedia Oriented Repository
Environment (MORE). A demonstration is available at URL http://rbse.jsc.nasa.gov:81/DEMO/.

E.2 TYPICAL REUSE LIBRARY TOOL CAPABILITIES

The reuse library tools identified in Section E.1 vary in their implementation, features, interfaces,
platforms, but typically they provide the following capabilities:

» Storage of asset metadata (information about the assets) and, optionally, storage of the assets.
Usually, various types of assets may be stored: for example, documents, code, and data.
Typically, the tools allow the specification of user-defined (or domain-specific) asset types.

» Electronic access to the assets and their metadata, usually in a multiuser, local, and/or wide
area network environment. Some tools also enable the protection of assets from unauthorized
access.

» Configuration control over asset metadata and, optionally, the assets. This includes the unique
identification of the assets, asset versioning, check in/check out of assets, status accounting and
reporting, and auditing.

* Asset classification to facilitate searching. The tools support one or more classification
schemes, such as enumerated (hierarchical), faceted, keyword, and uncontrolled (free text).
Some tools also enable multiple classification schemes of the same type to present alternate
views of the assets.

* Assetattributes and relationships definition. Attributes describe characteristics of the assets,
for example, name, type, version, language, and size. Relationships define connections among
different assets, for example, calls/called by, requires/required by, and uses/used by. Typical-
ly, the tools provide a base set of attribute and relationship types and enable the user to create
additional (possibly domain-specific) attribute and relationship types.

70

Appendix E. Reuse Library Tools

» Searching, browsing, viewing, and retrieval of assets. Generally, the tools provide multiple
mechanisms to help an application engineer find an asset, such as querying, keyword searches,
and browsers that enable the engineer to follow the relationships between assets. Usually, the
tools also provide a means to view the asset (if available electronically and text-based) before
retrieving the asset. Retrieval may be done by electronically downloading the asset to the
engineer’s workstation or by placing an order for the asset.

E.3 USING REUSE LIBRARY TOOLS IN SYNTHESIS

Reuse library tools in Synthesis do not have the significant role that they have in opportunistic,
library-based processes. In fact, there is greater potential use for reuse library tools in Domain
Engineering than in Application Engineering, which is where they are used in library-based processes.
Note that in the Rockwell case (Section 3.1), the CCSD did not use a reuse library tool. Nevertheless,.
reuse library tools can support a Synthesis process. This section describes the potential use of reuse
library tools in both Application and Domain Engineering.

E.3.1 REUSE LIBRARY ToOL USE IN APPLICATION ENGINEERING

In an opportunistic, library-based software process, reuse library tools are principally used by
application engineers to identify, select, and retrieve reusable assets. However, in a Synthesis process
the identification and selection of reusable assets is driven by the Decision Model and the architecture
and component mappings. Thus, in an Application Engineering context of a Synthesis process, the
searching and browsing features of a reuse library tool are not essential. What remains essential are
storage, configuration management, and retrieval capabilities, which a reuse library tool typically
provides.

The Boeing/Navy STARS case (Section 3.2) illustrates how Boeing used ROAMS in a Synthesis
Application Engineering process. In this case, ROAMS provided the storage mechanism for reusable
assets. Kamel interacted with the application engineer in constructing an Application Model. Based
on the Application Model, Kamel generated retrieval and adaptation directives. The Process Engine
then supplied the retrieval instructions to ROAMS to obtain the asset, which was then adapted by
Kamel. In this process, the application engineer had little to no direct contact with the reuse library
tool.

E.3.2 REUSE L1BRARY TOOL USE IN DOMAIN ENGINEERING

A suitable use for reuse library tools in Domain Engineering is in the inventorying, storage, and
retrieval of Legacy Products. In this mode of operation, all of the typical capabilities provided by a
reuse library tool are useful. The architectural and associative relationships between elements of a
system can be captured by storing the elements as assets and creating asset relationships
corresponding to the architectural relationships. Likewise, asset relationships can be created to
connect similar assets. Then, in the course of Domain Specification and Implementation, a domain
engineer can use the reuse library tool to search for and retrieve potential legacy assets for reuse.

A somewhat lesser use for a reuse library tool in Domain Engineering is to manage a repository of
domain work products, such as the Domain Synopsis, Domain Assumptions, Specifications, and
Adaptable Components. Domain engineers could use the tool to maintain configuration control over
domain work products as well as capture relationships between the products. Note, however, that
these capabilities could also be provided effectively by a good configuration management tool.

(Y

Appendix E. Reuse Library Tools

This page intentionally left blank.

APPENDIX F. TOOL CONTACT INFORMATION

This appendix enumerates the commercial tools mentioned in this report and identifies platforms and
vendor name and telephone for each. Inclusion in this list does not constitute a recommendation of
a tool nor does failure to reference a tool indicate that it is any less viable for potential use within a
leveraged Synthesis process than any similar tools listed. A comparison of all similar tools should be
conducted as part of the selection of a tool for any purpose. Information given here is based partially
on product descriptions provided in CASE Trends (1993) and in Ziff (1994).

For eachreferenced tool, its availability on popular platforms is identified. Platforms include PC (any
of Microsoft DOS, Windows, or NT), UNIX (any one or more UNIX platforms), Mac (Apple
Macintosh), and VMS (DEC). Some tools are also available on other platforms as well, particularly
mainframes. Vendors should be consulted for current and comprehensive information on their tools..

Tool Platform Vendor
AllChange PC, UNIX Intasoft Ltd., UK
+44-392-217670
Amadeus UNIX Amadeus Software Research
(617) 326-9339
ART UNIX, VMS Inference Corp.
(800) 322-9923
Bachman/Analyst Capture 0S/2 Bachman Information Systems, Inc.
(800) 222-4626
Borland C++ PC Borland International, Inc.
(800) 233-2444
BPwin PC Logic Works, Inc.
(800) 783-7946
CaseWare/CM UNIX CaseWare, Inc.
(714) 453-2200
CaseWare/PT UNIX CaseWare, Inc.
(714) 453-2200
CA-SuperProject PC, VMS Computer Associates International, Inc.
(800) 225-5224
CCC/Manager PC, UNIX, VMS, 0S/2 Softool Corp.
(800) 723-0696

73

Appendix F. Tool Contact Information

Tool

CCC/Pro

CDD

ClearCase

ClearQuality

CMS and MMS

Cohesion

DB2

DECPlan

DECRdb

Design/IDEF

Eiffel 3

FileMaker Pro

4th Dimension

FrameMaker

Galaxy Application

Environment

GemStone

Information Engineering
Facility

Platform

UNIX, VMS

VMS

PC, UNIX

PC, UNIX, Mac

VMS

VMS

0S/2, UNIX

VMS

VMS

Mac

Mac, UNIX, VMS

Mac, PC

Mac

UNIX, OS2

PC, Mac, OS2, UNIX,

VMS

UNIX, PC, Mac, VMS

MYVS, UNIX, VMS,
0OS/2, PC, Mac

Vendor

Softool Corp.
(800) 723-0696

Digital Equipment Corp.
(800) 777-4343

Atria Software, Inc.
(508) 650-5100

Clarify, Inc.
(408) 428-2000

Digital Equipment Corp.
(800) 344-4825

Digital Equipment Corp.
(800) 344-4825

IBM
(800) 426-3333

Digital Equipment Corp.
(800) 344-4825

Digital Equipment Corp.
(800) 344-4825

Meta Software Corp.
(800) 227-4106

Interactive Software Engineering, Inc.
(805) 685-1006

Claris Corp.
(800) 544-8554

ACI US, Inc.
(800) 384-0010

Frame Technology Corp.
(800) 843-7263

Visix Software, Inc.
(800) 832-8668

Servio Corp.
(800) 243-9369

Texas Instruments, Inc.
(800) 336-5236

74

Appendix F. Tool Contact Information

Tool

InQuisiX

Interleaf

IslandWrite

Logiscope

" Lotus 1-2-3

Lotus Notes
MacProject Pro
MatrixX

McCabe Instrumentation
Tool

Microsoft Access
Microsoft Excel
Microsoft Project
Microsoft Visuai C++
Microsoft Word
NextStep

ObjecTime

ObjectMaker

Platform

UNIX

UNIX

UNIX

UNIX, VMS

UNIX, Mac, PC, VMS,

0S/2

PC, UNIX, OS/2

Mac

UNIX

PC, UNIX, VMS

PC

PC, Mac

PC, Mac

PC

PC, Mac

UNIX

UNIX

UNIX, VMS, Mac, 0S/2,
PC

Vendor

Software Productivity Solutions, Inc.
(407) 984-3370

Interleaf, Inc.
(800) 955-5323

Island Software Corp.
(800) 255-4499

Logiscope Technologies, Inc.
(214) 241-6595

Lotus Development Corp.
(800) 343-5414

Lotus Development Corp.
(800) 343-5414

Claris Corp.
(800) 325-2747

Integrated Systems, Inc.
(408) 980-1500

McCabe & Associates, Inc.
(800) 638-6316

Microsoft Corp.
(800) 426-9400

Microsoft Corp.
(800) 426-9400

Microsoft Corp.
(800) 426-9400

Microsoft Corp.
(800) 426-9400

Microsoft Corp.
(800) 426-9400

NeXT Computer, Inc.
(800) 879-6398

ObjecTime, Ltd.
(800) 567-8463

Mark V Systems, Ltd.
(818) 995-7671

75

Appendix F. Tool Contact Information

Tool

Objectory

ObjectStore

OMTool

Ontos DB

Ontos Studio

Open Interface

OpenSelect

Oracle

Paradox

PowerBuilder

PROCESS WEAVER

Purify

PVCS

QualTEAM

Rational Rose

RCE

RDD-100

Platform

UNIX, PC, OS/2

UNIX, OS/2

UNIX, PC

UNIX, OS/2

UNIX, OS/2

PC, Mac, OS/2, VMS,

UNIX

PC

UNIX, OS/2, Mac

PC

Mac, UNIX

UNIX, PC

UNIX

PC, OS/2, UNIX

Ultrix, UNIX, IBM

RS/6000, Sun, VAX

UNIX, OS2

PC, UNIX

PC, Mac, UNIX

Vendor

Objectory Corp.
(203) 625-7250

Object Design, Inc.
(800) 962-9620

Martin Marietta Corf).
(800) 438-7246

ONTOS, Inc.
(800) 388-7110

ONTOS, Inc.
(800) 388-7110

Neuron Data, Inc.
(800) 876-4900

Rational Software Corp.
(originally Meridian Software Systems)
(800) 433-5444

Oracle Corp.
(800) 672-2531

Borland International, Inc.
(800) 233-2444

Powersoft Corp.
(800) 273-2841

Cap Gemini America
(213) 291-7804

Pure Software, Inc.
(800) 353-7873

Intersolv, Inc.
(800) 547-4000

Scopus Technology, Inc. .
(510) 428-0500

Rational Software Corp.
(800) 767-3237

Xcc Software Technology Transfer, Germany

+49-721-616474

Ascent Logic Corp.
(800) 654-4733

76

Appendix F. Tool Contact Information

Tool

Refine
Reusable Search Expert

Reuse Library Toolset
Reuse Management System
Smalltalk/V

SNAP

SoftBench

Software Through Pictures
Structured Environment
Statemate

SunPro Workshop

Sybase Open Client; Sybase
Open Server

Symantec C++
SynerVision

Teamwork C/Rev
Teamwork for Structured
Methods

Time Line

Versant ODBMS

Platform

UNIX

Sun, VMS

PC, UNIX

UNIX

PC, Mac, OS2

UNIX, VMS, PC

UNIX

UNIX

UNIX, VMS

UNIX

UNIX, VMS, OS§/2

-Mac, PC

UNIX, Sun

0§72, UNIX, VMS
UNIX, VMS, 0S/2
PC

UNIX, 0S/2

Vendor

Reasoning Systems
(415) 494-6201

Westinghouse, Inc.
(800) 742-4802

EVB Software Engineering, Inc.
(800) 877-1815

Atherton Technologies, Inc.
(800) 984-7233

Digitalk, Inc.
(800) 531-2344

Template Software, Inc.
(703) 318-1000

Hewlett-Packard Co.
(800) 752-0900

Interactive Development Environments
(800) 888-4331

i-Logix, Inc.
(508) 682-2100

Sun Microsystems, Inc.
(800) 926-6620

Sybase, Inc.
(800) 879-2273

Symantec Corp.
(800) 441-7234

Hewlett-Packard Co.
(800) 858-8867

Cadre Technologies, Inc.
(800) 743-2273

Cadre Technologies, Inc.
(800) 743-2273

Symantec Corp.
(800) 441-7234

Versant Object Technology Corp.
(800) 837-7268

77

Appendix F. Tool Contact Information

Tool Platform Vendor
Virtual Software Factory Ultrix, VAX, Sun, IBM Virtual Software Factory Ltd.
RS/6000 (703) 318-1190
Visual Basic PC Microsoft Corp.
(800) 426-9400
VisualWorks (Smalltalk) Mac, UNIX, 0S/2 ParcPlace Systems, Inc.
(800) 759-7272
WordPerfect PC, Mac, UNIX WordPerfect Corporation
(800) 451-5151
XVT PC, Mac, OS/2, UNIX XVT Software, Inc.
(800) 678-7988

LIST OF ABBREVIATIONS AND ACRONYMS

ARPA
ATIS

AVTS
CASE

- CCSD

CLIPS
CM
CORBA
CoRE
COTS
DARTS
DBMS
DE

DEC
ESP

I-CASE

Agents, Artifacts, and Activities

Ada-based Design Approach for Real-Time Systems
Application Engineering

Application Engineering Environment

Application Modeling Environment

Advanced Research Projects Agency

A Tool Integration Standard

Air Vehicle Training System

computer-aided software engineering

Command and Control Systems Division (Rockwell)
C Language Integrated Production System
configuration management

Common Object Request Broker Architecture
Consortium Requirements Engineering

commercial off-the-shelf

Domain Architecture for Reusable Training Systems
database manageinent system

Domain Engineering

Digital Equipment Corporation

Evolutionary Spiral Process

Flight Instrument Trainer

integrated computer-aided software engineering

List of Abbreviations and Acronyms

IR&D
KAMEL
MORE
NAWCTSD
OMG

PDL
PERT
POSIX
ROAMS
RSP

RTSA

SEE

SRS
STARS
WAIS

internal research and development

Knowledge-based Application Model EvaLuation
Multimedia Oriented Respository Environment
Naval Air Warfare Center Training Systems Division
Object Management Group

Program Design Language

Performance Evaluation Review Technique

Portable Operating System for Computer Environments
Reusable Object Access and Management System
Reuse-Driven Software Processes

Real-Time Structured Analysis

Software Engineering Environment

Software Requirements Specification

Software Technology for Adaptable, Reliable Systems

Wide Area Information System

80

GLOSSARY

These definitions are taken from the Reuse-Driven Software Processes Guidebook (Software
Productivity Consortium 1993). Refer to that document for additional information.

Activity ' A step of a process for producing and/or evaluating:
work products to satisfy objective(s) supporting that
process. An activity comprises other steps.

Application Engineering An iterative process for the design and development
of a product that satisfies specified customer require-
ments. Its work products are an Application Model
and an Application Product.

Application Model A set of resolved requirements and engineering.
decisions, as specified by a Decision Model, that
(partially) determine an instance of a family of

systems.

Application Product Software artifacts, including code and documentation,.
produced by Application Engineering to satisfy customer
requirements.

Commonality A characteristic of a domain that corresponds to a

similarity among members of the associated family
of systems. See Variability.

Decision Model The Domain Engineering work product that defines
the abstract form (concepts, decisions, and
structure) of an Application Model.

Domain A product family and an associated production
process supporting a product line.

Domain Analysis (Activity) ' The Domain Engineering activity in which domain
knowledge is studied and formalized. The expertise
in a business area is formalized to create standards
for problem descriptions and corresponding
solutions.

Domain Engineering An iterative process for the design and development
.of (1) a product family and (2) an Application
Engineering process for producing members of that

family.

- 81

Glossary

Domain Implementation (Activity)

Domain Management (Activity)

Family

Method

Methodology

Process
Product

Product family

Product line

Project Support (Activity)

Synthesis

The Domain Engineering activity that creates
support for Application Engineering projects in the
form of a Domain Implementation.

The Domain Engineering activity that plans,
monitors, and controls the activities and resources of
a Domain Engineering organization and which
coordinates domain development and evolution with
client Application Engineering projects.

A set of things that have enough in common that it
pays to consider their common characteristics before
noting specific properties of instances.

Guidance and criteria that prescribe a systematic,
repeatable technique for performing an activity.

An integrated body of principles, practices, and
methods that prescribe the proper performance of a
process.

A (partially) ordered set of steps, intended to.
accomplish specified objective(s).

The aggregation of all work products resulting from
a process or activity.

A representation of a set of products that are
characterized by specified commonalities and
variabilities. See Family.

A collection of (existing and potential) products that
address a designated business area.

The Domain Engineering activity that validates a
Domain Implementation, delivers it to Application
Engineering projects, and supports its use.

A methodology for the construction of software
systems as instances of a family of systems that have simi-
lar descriptions. Its primary distinguishing features are:

* Formalization of domains as families of systems
that share many common features, but which
also vary in well-defined ways

82

Glossary

Synthesis
(cont.)

System

Variability

* System building reduced to resolution of
requirements and engineering decisions that
represent the variations characteristic of a
domain

* Reuse of software artifacts through
mechanical adaptation of components to sat-
isfy requirements and engineering decisions

* Model-based analyses of described systems
to help understand the implications of
system-building decisions and evaluate
alternatives

A collection of hardware, software, and people that
operate together to accomplish a mission.

A characteristic of a domain that corresponds to
features that distinguish among members of the
associated family of systems. See Commonality.

83

Glossary

This page intentionally left blank.

84

Boeing
1994

Bragg, Thomas
1994

CASE Trends
1993

Eaton, Dave
1994a

1994b

Hausler, P. A, R. C. Linger,
and C. J. Trammell
1994

O’Connor, James, Catharine
Mansour, Jerri Turner-Harris,
and Grady Campbell

1994

. Software Productivity

Consortium
1990a

1990b

1991

1993

STARS
1993

REFERENCES

Baselined Logical Model as of June 17 (unpublished). Seattle,
Washington: Boeing Defense & Space Group.

A CASE for Defense: The Defense Department’s 10-Year
Integrated CASE Project. American Programmer 7, 7:16—22.

CASE Trends 5, 4, Shrewsbury, MA: Software Productivity
Group, Inc.

Management

Configuration Tools Summary,
comp.software.config—mgmt FAQ.
Problem Management Tools Summary,

comp.software.config—mgmt FAQ.

Adopting Cleanroom Software Engineering With a Phased
Approach. IBM Systems Journal 33, 1:89~109.

Reuse in Command-and-Control Systems. IEEE Software
11:70-79.

Synthesis Methodology Reference Model,
SYNTHESIS-REF-MODEL-90047-MC, version 01.00.03.
Herndon, Virginia: Software Productivity Consortium.

Reuse
Herndon,

Usage Scenario for the
EX US_RLT-90052-MC.
Productivity Consortium.

Library Toolset,
Virginia: Software

TRF2 Metaprogramming Tool User Guide, SPC-91132-MC,
version 01.00.02. Herndon, Virginia: Software Productivity
Consortium.

Reuse-Driven Software Processes Guidebook, SPC-92019-CMC,
version 02.00.03. Herndon, Virginia: Software Productivity
Consortium.

Integrated SEE Description SEE Reference Manual, D613-61016-1
(Draft). Seattle, Washington: Boeing Defense & Space Group.

85

References

1994a

1994b

STSC
1993

1994

Ziff
1994

Enabling AAA Runtime Support Using Denali. Seattle,
Washington: Software Technology for Adaptable Reliable
Systems.

Experience Reports — The Navy/STARS Demonstration Project.
Seattle, Washington: Software Technology for Adaptable
Reliable Systems.

Project Management Technology Report. Hill Air Force Base,
Utah: Software Technology Support Center.

Process Technologies Method and Tool Report. Hill Air Force
Base, Utah: Software Technology Support Center.

Computer Select. New York, New York: Ziff Communications
Co.

86

